Elucidating the complex hydrolysis and conversion network of xanthan-like extracellular heteropolysaccharides in waste activated sludge fermentation

IF 7.2 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Chen-Yuan Zhou , Kun Dai , Yi-Peng Lin , Xing-Chen Huang , Yan-Lin Hu , Xuan-Xin Chen , Xiao-Fei Yang , Qi-Yuan Sun , Yong Zhang , Mark C.M. van Loosdrecht , Raymond Jianxiong Zeng , Fang Zhang
{"title":"Elucidating the complex hydrolysis and conversion network of xanthan-like extracellular heteropolysaccharides in waste activated sludge fermentation","authors":"Chen-Yuan Zhou ,&nbsp;Kun Dai ,&nbsp;Yi-Peng Lin ,&nbsp;Xing-Chen Huang ,&nbsp;Yan-Lin Hu ,&nbsp;Xuan-Xin Chen ,&nbsp;Xiao-Fei Yang ,&nbsp;Qi-Yuan Sun ,&nbsp;Yong Zhang ,&nbsp;Mark C.M. van Loosdrecht ,&nbsp;Raymond Jianxiong Zeng ,&nbsp;Fang Zhang","doi":"10.1016/j.wroa.2025.100303","DOIUrl":null,"url":null,"abstract":"<div><div>The hydrolysis of structural extracellular polymeric substances (St-EPS) is considered a major limiting step in the anaerobic fermentation of waste activated sludge (WAS). However, the degradation of heteropolysaccharides, characterized by complex monomers of uronic acids and neutral saccharides in St-EPS, has rarely been reported. In this study, microbial-produced xanthan-like heteropolysaccharides, characterized by a blue filamentary film, were identified. The xanthan-producing bacteria comprised ∼7.2% of total genera present in WAS. An xanthan-degrading consortium (XDC) was enriched in an anaerobic batch reactor. This consortium could degrade Xanthan for over 90% and disrupt the gel structure of xanthan while promoting methane production from WAS by 29%. The xanthan degradation network consisting of extracellular enzymes and bacteria was elucidated by combining high-throughput sequencing, metagenomic, and metaproteomic analyses. Five enzymes were identified as responsible for hydrolyzing xanthan to monomers, including xanthan lyase, β-<span>d</span>-glucosidase, β-<span>d</span>-glucanase, α-<span>d</span>-mannosidase, and unsaturated glucuronyl hydrolase. Seven genera, including <em>Paenibacillus</em> (0.2%) and <em>Clostridium</em> (3.1%), were identified as key bacteria excreting one to five of the aforementioned enzymes. This study thus provides insights into the complex conversions in anaerobic digestion of WAS and gives a foundation for future optimization of this process.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"27 ","pages":"Article 100303"},"PeriodicalIF":7.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783115/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research X","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589914725000039","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The hydrolysis of structural extracellular polymeric substances (St-EPS) is considered a major limiting step in the anaerobic fermentation of waste activated sludge (WAS). However, the degradation of heteropolysaccharides, characterized by complex monomers of uronic acids and neutral saccharides in St-EPS, has rarely been reported. In this study, microbial-produced xanthan-like heteropolysaccharides, characterized by a blue filamentary film, were identified. The xanthan-producing bacteria comprised ∼7.2% of total genera present in WAS. An xanthan-degrading consortium (XDC) was enriched in an anaerobic batch reactor. This consortium could degrade Xanthan for over 90% and disrupt the gel structure of xanthan while promoting methane production from WAS by 29%. The xanthan degradation network consisting of extracellular enzymes and bacteria was elucidated by combining high-throughput sequencing, metagenomic, and metaproteomic analyses. Five enzymes were identified as responsible for hydrolyzing xanthan to monomers, including xanthan lyase, β-d-glucosidase, β-d-glucanase, α-d-mannosidase, and unsaturated glucuronyl hydrolase. Seven genera, including Paenibacillus (0.2%) and Clostridium (3.1%), were identified as key bacteria excreting one to five of the aforementioned enzymes. This study thus provides insights into the complex conversions in anaerobic digestion of WAS and gives a foundation for future optimization of this process.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Research X
Water Research X Environmental Science-Water Science and Technology
CiteScore
12.30
自引率
1.30%
发文量
19
期刊介绍: Water Research X is a sister journal of Water Research, which follows a Gold Open Access model. It focuses on publishing concise, letter-style research papers, visionary perspectives and editorials, as well as mini-reviews on emerging topics. The Journal invites contributions from researchers worldwide on various aspects of the science and technology related to the human impact on the water cycle, water quality, and its global management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信