Suppressing astrocytic GABA transaminase enhances tonic inhibition and weakens hippocampal spatial memory.

IF 9.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mingu Gordon Park, Jiwoon Lim, Daeun Kim, Won-Seok Lee, Bo-Eun Yoon, C Justin Lee
{"title":"Suppressing astrocytic GABA transaminase enhances tonic inhibition and weakens hippocampal spatial memory.","authors":"Mingu Gordon Park, Jiwoon Lim, Daeun Kim, Won-Seok Lee, Bo-Eun Yoon, C Justin Lee","doi":"10.1038/s12276-025-01398-0","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmacological suppression of γ-aminobutyric acid (GABA) transaminase (GABA-T), the sole GABA-degrading enzyme and a potential therapeutic target for treating brain disorders such as epilepsy, increases not only phasic inhibition but also tonic inhibition. However, the specific cellular source, neuromodulatory effects and potential therapeutic benefits of this enhanced tonic inhibition remain unexplored due to the lack of cell-type-specific gene manipulation studies. Here we report that the increase in tonic GABA currents observed after GABA-T suppression is predominantly due to increased tonic GABA release from astrocytes rather than action-potential-dependent synaptic GABA spillover. General GABA-T knockdown (KD) by a short hairpin RNA considerably increased tonic GABA currents in dentate granule cells, thereby enhancing tonic inhibition. An astrocyte-specific rescue of GABA-T following general GABA-T KD normalized the elevated tonic GABA currents to near control levels. Tetrodotoxin-insensitive tonic GABA currents were significantly increased after general GABA-T KD, whereas tetrodotoxin-sensitive tonic GABA currents showed no significant increase, suggesting that this enhanced tonic inhibition is primarily action-potential independent. General GABA-T KD reduced the spike probability of granule cells and impaired dorsal hippocampus-dependent spatial memory, which were fully reversed by astrocyte-specific GABA-T rescue. These findings suggest that suppressing astrocytic GABA-T may be sufficient to influence the excitatory/inhibitory balance in the brain and associated behaviors. Our study implies that the therapeutic benefits of pharmacological GABA-T suppression may be largely attributed to the modulation of astrocytic GABA-T and its impact on tonic GABA release from astrocytes. Here, we report distinct effects of GABA-T suppression depending on cell type; suppressing GABA-T in astrocytes enhances tonic inhibition, while its suppression in GABAergic neurons augments phasic inhibition. Our findings demonstrate that targeted suppression of astrocytic GABA-T not only enhances tonic GABA release from astrocytes but also significantly influences the excitation/inhibition balance in the brain, with consequential effects on behavior. This suggests that astrocytic GABA-T modulation holds promising potential for developing novel therapeutic strategies aimed at treating cognitive and neurological disorders through the regulation of astrocytic GABA metabolism. GAD glutamate decarboxylase, MAO-B monoamine oxidase B, BEST1 bestrophin 1, GABA-T GABA transaminase, GAT GABA transporter, DG dentate gyrus, SSA succinic semialdehyde.</p>","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":" ","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s12276-025-01398-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pharmacological suppression of γ-aminobutyric acid (GABA) transaminase (GABA-T), the sole GABA-degrading enzyme and a potential therapeutic target for treating brain disorders such as epilepsy, increases not only phasic inhibition but also tonic inhibition. However, the specific cellular source, neuromodulatory effects and potential therapeutic benefits of this enhanced tonic inhibition remain unexplored due to the lack of cell-type-specific gene manipulation studies. Here we report that the increase in tonic GABA currents observed after GABA-T suppression is predominantly due to increased tonic GABA release from astrocytes rather than action-potential-dependent synaptic GABA spillover. General GABA-T knockdown (KD) by a short hairpin RNA considerably increased tonic GABA currents in dentate granule cells, thereby enhancing tonic inhibition. An astrocyte-specific rescue of GABA-T following general GABA-T KD normalized the elevated tonic GABA currents to near control levels. Tetrodotoxin-insensitive tonic GABA currents were significantly increased after general GABA-T KD, whereas tetrodotoxin-sensitive tonic GABA currents showed no significant increase, suggesting that this enhanced tonic inhibition is primarily action-potential independent. General GABA-T KD reduced the spike probability of granule cells and impaired dorsal hippocampus-dependent spatial memory, which were fully reversed by astrocyte-specific GABA-T rescue. These findings suggest that suppressing astrocytic GABA-T may be sufficient to influence the excitatory/inhibitory balance in the brain and associated behaviors. Our study implies that the therapeutic benefits of pharmacological GABA-T suppression may be largely attributed to the modulation of astrocytic GABA-T and its impact on tonic GABA release from astrocytes. Here, we report distinct effects of GABA-T suppression depending on cell type; suppressing GABA-T in astrocytes enhances tonic inhibition, while its suppression in GABAergic neurons augments phasic inhibition. Our findings demonstrate that targeted suppression of astrocytic GABA-T not only enhances tonic GABA release from astrocytes but also significantly influences the excitation/inhibition balance in the brain, with consequential effects on behavior. This suggests that astrocytic GABA-T modulation holds promising potential for developing novel therapeutic strategies aimed at treating cognitive and neurological disorders through the regulation of astrocytic GABA metabolism. GAD glutamate decarboxylase, MAO-B monoamine oxidase B, BEST1 bestrophin 1, GABA-T GABA transaminase, GAT GABA transporter, DG dentate gyrus, SSA succinic semialdehyde.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental and Molecular Medicine
Experimental and Molecular Medicine 医学-生化与分子生物学
CiteScore
19.50
自引率
0.80%
发文量
166
审稿时长
3 months
期刊介绍: Experimental & Molecular Medicine (EMM) stands as Korea's pioneering biochemistry journal, established in 1964 and rejuvenated in 1996 as an Open Access, fully peer-reviewed international journal. Dedicated to advancing translational research and showcasing recent breakthroughs in the biomedical realm, EMM invites submissions encompassing genetic, molecular, and cellular studies of human physiology and diseases. Emphasizing the correlation between experimental and translational research and enhanced clinical benefits, the journal actively encourages contributions employing specific molecular tools. Welcoming studies that bridge basic discoveries with clinical relevance, alongside articles demonstrating clear in vivo significance and novelty, Experimental & Molecular Medicine proudly serves as an open-access, online-only repository of cutting-edge medical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信