Digitalomics: Towards Artificial Intelligence / Machine Learning-Based Precision Cardiovascular Medicine.

IF 3.1 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Akihiro Nomura, Yasuaki Takeji, Masaya Shimojima, Masayuki Takamura
{"title":"Digitalomics: Towards Artificial Intelligence / Machine Learning-Based Precision Cardiovascular Medicine.","authors":"Akihiro Nomura, Yasuaki Takeji, Masaya Shimojima, Masayuki Takamura","doi":"10.1253/circj.CJ-24-0865","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in traditional \"-omics\" technologies have provided deeper insights into cardiovascular diseases through comprehensive molecular profiling. Accordingly, digitalomics has emerged as a novel transdisciplinary concept that integrates multimodal information with digitized physiological data, medical imaging, environmental data, electronic health records, environmental records, and biometric data from wearables. This digitalomics-driven augmented multiomics approach can provide more precise personalized health risk assessments and optimization when combined with conventional multiomics approaches. Artificial intelligence and machine learning (AI/ML) technologies, alongside statistical methods, serve as key comprehensive analytical tools in realizing this comprehensive framework. This review focuses on two promising AI/ML applications in cardiovascular medicine: digital phonocardiography (PCG) and AI text generators. Digital PCG uses AI/ML models to objectively analyze heart sounds and predict clinical parameters, potentially surpassing traditional auscultation capabilities. In addition, large language models, such as generative pretrained transformer, have demonstrated remarkable performance in assessing medical knowledge, achieving accuracy rates exceeding 80% in medical licensing examinations, although there are issues regarding knowledge accuracy and safety. Current challenges to the implementation of these technologies include maintaining up-to-date medical knowledge and ensuring consistent accuracy of outputs, but ongoing developments in fine-tuning and retrieval-augmented generation show promise in addressing these challenges. Integration of AI/ML technologies in clinical practice, guided by appropriate validation and implementation strategies, may notably advance precision cardiovascular medicine through the digitalomics framework.</p>","PeriodicalId":50691,"journal":{"name":"Circulation Journal","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1253/circj.CJ-24-0865","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in traditional "-omics" technologies have provided deeper insights into cardiovascular diseases through comprehensive molecular profiling. Accordingly, digitalomics has emerged as a novel transdisciplinary concept that integrates multimodal information with digitized physiological data, medical imaging, environmental data, electronic health records, environmental records, and biometric data from wearables. This digitalomics-driven augmented multiomics approach can provide more precise personalized health risk assessments and optimization when combined with conventional multiomics approaches. Artificial intelligence and machine learning (AI/ML) technologies, alongside statistical methods, serve as key comprehensive analytical tools in realizing this comprehensive framework. This review focuses on two promising AI/ML applications in cardiovascular medicine: digital phonocardiography (PCG) and AI text generators. Digital PCG uses AI/ML models to objectively analyze heart sounds and predict clinical parameters, potentially surpassing traditional auscultation capabilities. In addition, large language models, such as generative pretrained transformer, have demonstrated remarkable performance in assessing medical knowledge, achieving accuracy rates exceeding 80% in medical licensing examinations, although there are issues regarding knowledge accuracy and safety. Current challenges to the implementation of these technologies include maintaining up-to-date medical knowledge and ensuring consistent accuracy of outputs, but ongoing developments in fine-tuning and retrieval-augmented generation show promise in addressing these challenges. Integration of AI/ML technologies in clinical practice, guided by appropriate validation and implementation strategies, may notably advance precision cardiovascular medicine through the digitalomics framework.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Circulation Journal
Circulation Journal 医学-心血管系统
CiteScore
5.80
自引率
12.10%
发文量
471
审稿时长
1.6 months
期刊介绍: Circulation publishes original research manuscripts, review articles, and other content related to cardiovascular health and disease, including observational studies, clinical trials, epidemiology, health services and outcomes studies, and advances in basic and translational research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信