Eun Sun Lee, Hyeong Jae Kim, Dongun Lee, Jung Yun Kang, Dong Min Shin, Jeong Hee Hong
{"title":"Rheumatoid arthritis severity is mediated by crosstalk between synoviocytes and mature osteoclasts through a calcium and cytokine feedback loop.","authors":"Eun Sun Lee, Hyeong Jae Kim, Dongun Lee, Jung Yun Kang, Dong Min Shin, Jeong Hee Hong","doi":"10.1038/s12276-025-01401-8","DOIUrl":null,"url":null,"abstract":"<p><p>Fibroblast-like synoviocytes (FLSs) and osteoclasts are central cells in the maintenance of joint homeostasis. Rheumatoid arthritis (RA) is a chronic inflammatory disease of joints that induces cytokine-activated FLSs and progressive bone erosion. Interactions between FLSs and other cells, such as T cells and B cells, have been recognized in the development of RA. Here we hypothesized that calcium released from bone by mature osteoclasts might activate FLSs, which are also affected by inflammatory cytokines in the inflamed synovium. Osteoclastogenesis occurs in the presence of cytokine-stimulated FLS medium, and calcium released from the bone disc activates FLS migration. We first investigated the calcium and cytokine feedback loop between FLSs and osteoclast maturation. Moreover, by addressing the role of the sodium-bicarbonate cotransporter NBCn1 in osteoclastogenesis, we found that the inhibition of NBCn1 attenuated the infinite calcium and cytokine feedback loop between FLSs and osteoclasts. In a collagen-induced arthritis mouse model, the inhibition of NBC reduced the RA pathological phenotype and bone resorption area in the femur. These results suggest that modulation of the crosstalk between FLSs and osteoclasts by inhibiting the calcium and cytokine feedback loop could be considered to develop pioneering strategies to combat RA severity and dysregulated bone homeostasis.</p>","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":" ","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s12276-025-01401-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fibroblast-like synoviocytes (FLSs) and osteoclasts are central cells in the maintenance of joint homeostasis. Rheumatoid arthritis (RA) is a chronic inflammatory disease of joints that induces cytokine-activated FLSs and progressive bone erosion. Interactions between FLSs and other cells, such as T cells and B cells, have been recognized in the development of RA. Here we hypothesized that calcium released from bone by mature osteoclasts might activate FLSs, which are also affected by inflammatory cytokines in the inflamed synovium. Osteoclastogenesis occurs in the presence of cytokine-stimulated FLS medium, and calcium released from the bone disc activates FLS migration. We first investigated the calcium and cytokine feedback loop between FLSs and osteoclast maturation. Moreover, by addressing the role of the sodium-bicarbonate cotransporter NBCn1 in osteoclastogenesis, we found that the inhibition of NBCn1 attenuated the infinite calcium and cytokine feedback loop between FLSs and osteoclasts. In a collagen-induced arthritis mouse model, the inhibition of NBC reduced the RA pathological phenotype and bone resorption area in the femur. These results suggest that modulation of the crosstalk between FLSs and osteoclasts by inhibiting the calcium and cytokine feedback loop could be considered to develop pioneering strategies to combat RA severity and dysregulated bone homeostasis.
期刊介绍:
Experimental & Molecular Medicine (EMM) stands as Korea's pioneering biochemistry journal, established in 1964 and rejuvenated in 1996 as an Open Access, fully peer-reviewed international journal. Dedicated to advancing translational research and showcasing recent breakthroughs in the biomedical realm, EMM invites submissions encompassing genetic, molecular, and cellular studies of human physiology and diseases. Emphasizing the correlation between experimental and translational research and enhanced clinical benefits, the journal actively encourages contributions employing specific molecular tools. Welcoming studies that bridge basic discoveries with clinical relevance, alongside articles demonstrating clear in vivo significance and novelty, Experimental & Molecular Medicine proudly serves as an open-access, online-only repository of cutting-edge medical research.