Target identification under high levels of amplitude, size, orientation and background uncertainty.

IF 2 4区 心理学 Q2 OPHTHALMOLOGY
Can Oluk, Wilson S Geisler
{"title":"Target identification under high levels of amplitude, size, orientation and background uncertainty.","authors":"Can Oluk, Wilson S Geisler","doi":"10.1167/jov.25.2.3","DOIUrl":null,"url":null,"abstract":"<p><p>Many natural tasks require the visual system to classify image patches accurately into target categories, including the category of no target. Natural target categories often involve high levels of within-category variability (uncertainty), making it challenging to uncover the underlying computational mechanisms. Here, we describe these tasks as identification from a set of exhaustive, mutually exclusive target categories, each partitioned into mutually exclusive subcategories. We derive the optimal decision rule and present a computational method to simulate performance for moderately large and complex tasks. We focus on the detection of an additive wavelet target in white noise with five dimensions of stimulus uncertainty: target amplitude, orientation, scale, background contrast, and spatial pattern. We compare the performance of the ideal observer with various heuristic observers. We find that a properly normalized heuristic MAX observer (SNN-MAX) approximates optimal performance. We also find that a convolutional neural network trained on this task approaches but does not reach optimal performance, even with extensive training. We measured human performance on a task with three of these dimensions of uncertainty (orientation, scale, and background pattern). Results show that the pattern of hits and correct rejections for the ideal and SNN-MAX observers (but not a simple MAX observer) aligns with the data. Additionally, we measured performance without scale and orientation uncertainty and found that the effect of uncertainty on performance was less than predicted by any model. This unexpectedly small effect can largely be explained by incorporating biologically plausible levels of intrinsic position uncertainty into the models.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":"25 2","pages":"3"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vision","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/jov.25.2.3","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Many natural tasks require the visual system to classify image patches accurately into target categories, including the category of no target. Natural target categories often involve high levels of within-category variability (uncertainty), making it challenging to uncover the underlying computational mechanisms. Here, we describe these tasks as identification from a set of exhaustive, mutually exclusive target categories, each partitioned into mutually exclusive subcategories. We derive the optimal decision rule and present a computational method to simulate performance for moderately large and complex tasks. We focus on the detection of an additive wavelet target in white noise with five dimensions of stimulus uncertainty: target amplitude, orientation, scale, background contrast, and spatial pattern. We compare the performance of the ideal observer with various heuristic observers. We find that a properly normalized heuristic MAX observer (SNN-MAX) approximates optimal performance. We also find that a convolutional neural network trained on this task approaches but does not reach optimal performance, even with extensive training. We measured human performance on a task with three of these dimensions of uncertainty (orientation, scale, and background pattern). Results show that the pattern of hits and correct rejections for the ideal and SNN-MAX observers (but not a simple MAX observer) aligns with the data. Additionally, we measured performance without scale and orientation uncertainty and found that the effect of uncertainty on performance was less than predicted by any model. This unexpectedly small effect can largely be explained by incorporating biologically plausible levels of intrinsic position uncertainty into the models.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Vision
Journal of Vision 医学-眼科学
CiteScore
2.90
自引率
5.60%
发文量
218
审稿时长
3-6 weeks
期刊介绍: Exploring all aspects of biological visual function, including spatial vision, perception, low vision, color vision and more, spanning the fields of neuroscience, psychology and psychophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信