Cobalt phosphide-loaded biochar synthesis using phosphate-accumulating yeast and its application as an electrocatalyst

Q1 Immunology and Microbiology
Yoshihiro Ojima , Riho Akiyoshi , Itto Tokiwa , Takashi Nakazono , Yusuke Yamada , Masayuki Azuma
{"title":"Cobalt phosphide-loaded biochar synthesis using phosphate-accumulating yeast and its application as an electrocatalyst","authors":"Yoshihiro Ojima ,&nbsp;Riho Akiyoshi ,&nbsp;Itto Tokiwa ,&nbsp;Takashi Nakazono ,&nbsp;Yusuke Yamada ,&nbsp;Masayuki Azuma","doi":"10.1016/j.btre.2025.e00874","DOIUrl":null,"url":null,"abstract":"<div><div>A phosphorus (P)-accumulating mutant strain of <em>Saccharomyces cerevisiae</em> is used as a precursor for transition metal phosphides (TMPs) biochar. Tetrahydrofuran treatment of the P-accumulating yeast coupled with pyrolysis resulted in the formation of CoP-loaded biochar (CoP@P-yeast) unlike previously reported Co<sub>2</sub>P-loaded biochar using dry baker's yeast. The CoP@P-yeast exhibited the electrocatalytic activity for the hydrogen evolution with an overpotential of −192 mV at 10 mA cm<sup>−2</sup>. Furthermore, the CoP@P-yeast showed the highest ammonia production rate of 33 mg-NH<sub>3</sub> h<sup>−1</sup> mg-catalyst<sup>−1</sup> in nitrate reduction reaction, as well as much higher than that with platinum on graphitized carbon. Scanning electron microscopy and transmission electron microscopy observations revealed that relatively large TMP crystals mainly located at the biochar surface, which may be beneficial to avoid catalytic deterioration during the nitrate reduction reaction. This study demonstrates that P-accumulating mutant strain of yeast is a suitable precursor to improve the activity of the resulting TMP biochar.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"45 ","pages":"Article e00874"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787416/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215017X25000013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0

Abstract

A phosphorus (P)-accumulating mutant strain of Saccharomyces cerevisiae is used as a precursor for transition metal phosphides (TMPs) biochar. Tetrahydrofuran treatment of the P-accumulating yeast coupled with pyrolysis resulted in the formation of CoP-loaded biochar (CoP@P-yeast) unlike previously reported Co2P-loaded biochar using dry baker's yeast. The CoP@P-yeast exhibited the electrocatalytic activity for the hydrogen evolution with an overpotential of −192 mV at 10 mA cm−2. Furthermore, the CoP@P-yeast showed the highest ammonia production rate of 33 mg-NH3 h−1 mg-catalyst−1 in nitrate reduction reaction, as well as much higher than that with platinum on graphitized carbon. Scanning electron microscopy and transmission electron microscopy observations revealed that relatively large TMP crystals mainly located at the biochar surface, which may be beneficial to avoid catalytic deterioration during the nitrate reduction reaction. This study demonstrates that P-accumulating mutant strain of yeast is a suitable precursor to improve the activity of the resulting TMP biochar.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology Reports
Biotechnology Reports Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
15.80
自引率
0.00%
发文量
79
审稿时长
55 days
期刊介绍: Biotechnology Reports covers all aspects of Biotechnology particularly those reports that are useful and informative and that will be of value to other researchers in related fields. Biotechnology Reports loves ground breaking science, but will also accept good science that can be of use to the biotechnology community. The journal maintains a high quality peer review where submissions are considered on the basis of scientific validity and technical quality. Acceptable paper types are research articles (short or full communications), methods, mini-reviews, and commentaries in the following areas: Healthcare and pharmaceutical biotechnology Agricultural and food biotechnology Environmental biotechnology Molecular biology, cell and tissue engineering and synthetic biology Industrial biotechnology, biofuels and bioenergy Nanobiotechnology Bioinformatics & systems biology New processes and products in biotechnology, bioprocess engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信