Wenjun Bai , Okito Yamashita , Junichiro Yoshimoto
{"title":"Functionally specialized spectral organization of the resting human cortex","authors":"Wenjun Bai , Okito Yamashita , Junichiro Yoshimoto","doi":"10.1016/j.neunet.2025.107195","DOIUrl":null,"url":null,"abstract":"<div><div>Ample studies across various neuroimaging modalities have suggested that the human cortex at rest is hierarchically organized along the spectral and functional axes. However, the relationship between the spectral and functional organizations of the human cortex remains largely unexplored. Here, we reveal the confluence of functional and spectral cortical organizations by examining the functional specialization in spectral gradients of the cortex. These spectral gradients, derived from functional magnetic resonance imaging data at rest using our temporal de-correlation method to enhance spectral resolution, demonstrate regional frequency biases. The grading of spectral gradients across the cortex – aligns with many existing brain maps – is found to be highly functionally specialized through discovered frequency-specific resting-state functional networks, functionally distinctive spectral profiles, and an intrinsic coordinate system that is functionally specialized. By demonstrating the functionally specialized spectral gradients of the cortex, we shed light on the close relation between functional and spectral organizations of the resting human cortex.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"185 ","pages":"Article 107195"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025000747","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Ample studies across various neuroimaging modalities have suggested that the human cortex at rest is hierarchically organized along the spectral and functional axes. However, the relationship between the spectral and functional organizations of the human cortex remains largely unexplored. Here, we reveal the confluence of functional and spectral cortical organizations by examining the functional specialization in spectral gradients of the cortex. These spectral gradients, derived from functional magnetic resonance imaging data at rest using our temporal de-correlation method to enhance spectral resolution, demonstrate regional frequency biases. The grading of spectral gradients across the cortex – aligns with many existing brain maps – is found to be highly functionally specialized through discovered frequency-specific resting-state functional networks, functionally distinctive spectral profiles, and an intrinsic coordinate system that is functionally specialized. By demonstrating the functionally specialized spectral gradients of the cortex, we shed light on the close relation between functional and spectral organizations of the resting human cortex.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.