Phytochemical composition and antimicrobial potential of Stevia rebaudiana Bertoni extract and its topical spray formulation against animal skin pathogens.

IF 1.7 Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Veterinary World Pub Date : 2024-12-01 Epub Date: 2024-12-30 DOI:10.14202/vetworld.2024.2975-2984
Ranee Singh, Glenn Neville Borlace, Patchanee Sringam, Eakachai Thongkham, Jareerat Aiemsaard
{"title":"Phytochemical composition and antimicrobial potential of <i>Stevia rebaudiana</i> Bertoni extract and its topical spray formulation against animal skin pathogens.","authors":"Ranee Singh, Glenn Neville Borlace, Patchanee Sringam, Eakachai Thongkham, Jareerat Aiemsaard","doi":"10.14202/vetworld.2024.2975-2984","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aim: </strong>The rise of antimicrobial resistance in veterinary medicine is a significant concern, particularly for pathogens responsible for skin infections. Although <i>Stevia rebaudiana</i> Bertoni (stevia) has demonstrated effective antimicrobial properties, there is limited research on its efficacy against animal skin pathogens. This study aimed to identify natural compounds in stevia extract, develop a topical spray formulation, and assess its effectiveness against six common bacterial and fungal pathogens associated with animal skin infections.</p><p><strong>Materials and methods: </strong>The aerial parts of stevia plants were extracted using hexane in a Soxhlet apparatus. Total phenolic and flavonoid contents were quantified using colorimetric assays. The volatile oil content was analyzed using gas chromatography-mass spectrometry (GC-MS). The antimicrobial activity of stevia extract against <i>Staphylococcus pseudintermedius</i>, <i>Malassezia pachydermatis</i>, <i>Microsporum canis</i>, <i>Microsporum gypseum</i>, <i>Microsporum gallinae</i>, and <i>Trichophyton mentagrophytes</i> was evaluated using broth microdilution and time-kill tests. Environmental scanning electron microscopy (E-SEM) and leakage studies were conducted to assess the extract's impact on microbial morphology and cell membrane integrity. The antimicrobial efficacy and stability of a topical spray formulation containing stevia extract were evaluated using time-kill and freeze-thaw testing.</p><p><strong>Results: </strong>The stevia extract yield was 3.59% of the dry plant weight with 259.96 ± 23.66 mg gallic acid equivalent (GAE)/g extract of total phenolics and 247.41 ± 19.92 mg quercetin equivalent (QE)/g extract of total flavonoids. GC-MS analysis identified major volatile components, including N-acetyl-14, 15, 16-trinorlabd-8(17)-en-13-amine (37.70% of peak area), phytol (11.02% of peak area), (-)-spathulenol (9.46% of peak area), n-hexadecanoic acid (8.01% of peak area), and (diphenylphosphinoyloxymethyl) dimethylsilane (7.59% of peak area). The minimum inhibitory concentration of the extract against the tested microorganisms ranged from 0.25 to 128.00 mg/mL. Time-kill kinetics exhibited time- and concentration-dependent germicidal effects. E-SEM and cell leakage analyses indicated that stevia extract compromised microbial cell membrane integrity. A spray formulation containing 10% w/w stevia extract displayed excellent eradication efficacy, achieving a 99.9999% reduction of <i>S. pseudintermedius</i> and a 99.999% reduction of <i>M. pachydermatis</i> and dermatophytes, with good stability after six freeze-thaw cycles.</p><p><strong>Conclusion: </strong>Stevia extract is an effective antimicrobial against <i>S. pseudintermedius</i>, <i>M. pachydermatis</i>, <i>Mi. canis</i>, <i>Mi. gypseum, Mi. gallinae</i>, and <i>T. mentagrophytes</i> <i>in vitro</i>. Future research will investigate the pharmaceutical properties and toxicity profiles of purified compounds and determine appropriate dosages and clinical efficacy.</p>","PeriodicalId":23587,"journal":{"name":"Veterinary World","volume":"17 12","pages":"2975-2984"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784044/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary World","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14202/vetworld.2024.2975-2984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aim: The rise of antimicrobial resistance in veterinary medicine is a significant concern, particularly for pathogens responsible for skin infections. Although Stevia rebaudiana Bertoni (stevia) has demonstrated effective antimicrobial properties, there is limited research on its efficacy against animal skin pathogens. This study aimed to identify natural compounds in stevia extract, develop a topical spray formulation, and assess its effectiveness against six common bacterial and fungal pathogens associated with animal skin infections.

Materials and methods: The aerial parts of stevia plants were extracted using hexane in a Soxhlet apparatus. Total phenolic and flavonoid contents were quantified using colorimetric assays. The volatile oil content was analyzed using gas chromatography-mass spectrometry (GC-MS). The antimicrobial activity of stevia extract against Staphylococcus pseudintermedius, Malassezia pachydermatis, Microsporum canis, Microsporum gypseum, Microsporum gallinae, and Trichophyton mentagrophytes was evaluated using broth microdilution and time-kill tests. Environmental scanning electron microscopy (E-SEM) and leakage studies were conducted to assess the extract's impact on microbial morphology and cell membrane integrity. The antimicrobial efficacy and stability of a topical spray formulation containing stevia extract were evaluated using time-kill and freeze-thaw testing.

Results: The stevia extract yield was 3.59% of the dry plant weight with 259.96 ± 23.66 mg gallic acid equivalent (GAE)/g extract of total phenolics and 247.41 ± 19.92 mg quercetin equivalent (QE)/g extract of total flavonoids. GC-MS analysis identified major volatile components, including N-acetyl-14, 15, 16-trinorlabd-8(17)-en-13-amine (37.70% of peak area), phytol (11.02% of peak area), (-)-spathulenol (9.46% of peak area), n-hexadecanoic acid (8.01% of peak area), and (diphenylphosphinoyloxymethyl) dimethylsilane (7.59% of peak area). The minimum inhibitory concentration of the extract against the tested microorganisms ranged from 0.25 to 128.00 mg/mL. Time-kill kinetics exhibited time- and concentration-dependent germicidal effects. E-SEM and cell leakage analyses indicated that stevia extract compromised microbial cell membrane integrity. A spray formulation containing 10% w/w stevia extract displayed excellent eradication efficacy, achieving a 99.9999% reduction of S. pseudintermedius and a 99.999% reduction of M. pachydermatis and dermatophytes, with good stability after six freeze-thaw cycles.

Conclusion: Stevia extract is an effective antimicrobial against S. pseudintermedius, M. pachydermatis, Mi. canis, Mi. gypseum, Mi. gallinae, and T. mentagrophytes in vitro. Future research will investigate the pharmaceutical properties and toxicity profiles of purified compounds and determine appropriate dosages and clinical efficacy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Veterinary World
Veterinary World Multiple-
CiteScore
3.60
自引率
12.50%
发文量
317
审稿时长
16 weeks
期刊介绍: Veterinary World publishes high quality papers focusing on Veterinary and Animal Science. The fields of study are bacteriology, parasitology, pathology, virology, immunology, mycology, public health, biotechnology, meat science, fish diseases, nutrition, gynecology, genetics, wildlife, laboratory animals, animal models of human infections, prion diseases and epidemiology. Studies on zoonotic and emerging infections are highly appreciated. Review articles are highly appreciated. All articles published by Veterinary World are made freely and permanently accessible online. All articles to Veterinary World are posted online immediately as they are ready for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信