{"title":"Physics-based generative adversarial network for real-time acoustic holography","authors":"Qingyi Lu , Chengxi Zhong , Hu Su , Song Liu","doi":"10.1016/j.ultras.2025.107583","DOIUrl":null,"url":null,"abstract":"<div><div>Acoustic holography (AH) encodes the acoustic fields in high dimensions into two-dimensional holograms without information loss. Phase-only holography (POH) modulates only the phase profiles of the encoded hologram, establishing its superiority over alternative modulation schedules due to its information volume and storage efficiency. Moreover, POH implemented by a phased array of transducers (PAT) facilitates active and dynamic manipulation by independently modulating the phase of each transducer. However, existing algorithms for POH calculation suffer from a deficiency in terms of high fidelity and good real-time performance. Thus, a deep learning algorithm reinforced by the physical model, i.e. Angular Spectrum Method (ASM), is proposed to learn the inverse physical mapping from the target field to the source POH. This method comprises a generative adversarial network (GAN) evaluated by soft label, which is referred to as soft-GAN. Furthermore, to avoid the intrinsic limitation of neural networks on high-frequency features, a Y-Net structure is developed with two decoder branches in frequency and spatial domain, respectively. The proposed method achieves the reconstruction performance with a state-of-the-art (SOTA) Peak Signal-to-Noise Ratio (PSNR) of 24.05 dB. Experiment results demonstrated that the POH calculated by the proposed method enables accurate and real-time hologram reconstruction, showing enormous potential for applications.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"149 ","pages":"Article 107583"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X25000204","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Acoustic holography (AH) encodes the acoustic fields in high dimensions into two-dimensional holograms without information loss. Phase-only holography (POH) modulates only the phase profiles of the encoded hologram, establishing its superiority over alternative modulation schedules due to its information volume and storage efficiency. Moreover, POH implemented by a phased array of transducers (PAT) facilitates active and dynamic manipulation by independently modulating the phase of each transducer. However, existing algorithms for POH calculation suffer from a deficiency in terms of high fidelity and good real-time performance. Thus, a deep learning algorithm reinforced by the physical model, i.e. Angular Spectrum Method (ASM), is proposed to learn the inverse physical mapping from the target field to the source POH. This method comprises a generative adversarial network (GAN) evaluated by soft label, which is referred to as soft-GAN. Furthermore, to avoid the intrinsic limitation of neural networks on high-frequency features, a Y-Net structure is developed with two decoder branches in frequency and spatial domain, respectively. The proposed method achieves the reconstruction performance with a state-of-the-art (SOTA) Peak Signal-to-Noise Ratio (PSNR) of 24.05 dB. Experiment results demonstrated that the POH calculated by the proposed method enables accurate and real-time hologram reconstruction, showing enormous potential for applications.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.