A survey of multilingual large language models.

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Libo Qin, Qiguang Chen, Yuhang Zhou, Zhi Chen, Yinghui Li, Lizi Liao, Min Li, Wanxiang Che, Philip S Yu
{"title":"A survey of multilingual large language models.","authors":"Libo Qin, Qiguang Chen, Yuhang Zhou, Zhi Chen, Yinghui Li, Lizi Liao, Min Li, Wanxiang Che, Philip S Yu","doi":"10.1016/j.patter.2024.101118","DOIUrl":null,"url":null,"abstract":"<p><p>Multilingual large language models (MLLMs) leverage advanced large language models to process and respond to queries across multiple languages, achieving significant success in polyglot tasks. Despite these breakthroughs, a comprehensive survey summarizing existing approaches and recent developments remains absent. To this end, this paper presents a unified and thorough review of the field, highlighting recent progress and emerging trends in MLLM research. The contributions of this paper are as follows. (1) Extensive survey: to our knowledge, this is the pioneering thorough review of multilingual alignment in MLLMs. (2) Unified taxonomy: we provide a unified framework to summarize the current progress in MLLMs. (3) Emerging frontiers: key emerging frontiers are identified, alongside a discussion of associated challenges. (4) Abundant resources: we collect abundant open-source resources, including relevant papers, data corpora, and leaderboards. We hope our work can provide the community quick access and spur breakthrough research in MLLMs.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"6 1","pages":"101118"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783891/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multilingual large language models (MLLMs) leverage advanced large language models to process and respond to queries across multiple languages, achieving significant success in polyglot tasks. Despite these breakthroughs, a comprehensive survey summarizing existing approaches and recent developments remains absent. To this end, this paper presents a unified and thorough review of the field, highlighting recent progress and emerging trends in MLLM research. The contributions of this paper are as follows. (1) Extensive survey: to our knowledge, this is the pioneering thorough review of multilingual alignment in MLLMs. (2) Unified taxonomy: we provide a unified framework to summarize the current progress in MLLMs. (3) Emerging frontiers: key emerging frontiers are identified, alongside a discussion of associated challenges. (4) Abundant resources: we collect abundant open-source resources, including relevant papers, data corpora, and leaderboards. We hope our work can provide the community quick access and spur breakthrough research in MLLMs.

多语种大型语言模型综述。
多语言大型语言模型(mllm)利用先进的大型语言模型来处理和响应跨多种语言的查询,从而在多语言任务中取得重大成功。尽管取得了这些突破,但仍然没有对现有方法和最新发展进行全面的调查。为此,本文对该领域进行了统一而全面的回顾,突出了MLLM研究的最新进展和新兴趋势。本文的贡献如下:(1)广泛的调查:据我们所知,这是对mlms中多语言对齐的开创性彻底审查。(2)统一的分类:我们提供了一个统一的框架来总结当前mllm的进展。(3)新兴领域:确定了主要的新兴领域,并讨论了相关的挑战。(4)资源丰富:我们收集了丰富的开源资源,包括相关论文、数据语料库、排行榜等。我们希望我们的工作能够为社区提供快速访问并促进传销管理硕士的突破性研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信