Repurposing brucine as a chemopreventive agent in mammary gland carcinoma: Regulating lactate transport through MCT-4

Q1 Environmental Science
Asma Khatoon Zaidi , Anurag Kumar , Rohit Kumar , Jyoti Singh , Sneha Yadav , Archana Bharti Sonkar , Dharmendra Kumar , Neeraj Kumar Shrivastava , Mohd Nazam Ansari , Abdulaziz S. Saeedan , Gaurav Kaithwas
{"title":"Repurposing brucine as a chemopreventive agent in mammary gland carcinoma: Regulating lactate transport through MCT-4","authors":"Asma Khatoon Zaidi ,&nbsp;Anurag Kumar ,&nbsp;Rohit Kumar ,&nbsp;Jyoti Singh ,&nbsp;Sneha Yadav ,&nbsp;Archana Bharti Sonkar ,&nbsp;Dharmendra Kumar ,&nbsp;Neeraj Kumar Shrivastava ,&nbsp;Mohd Nazam Ansari ,&nbsp;Abdulaziz S. Saeedan ,&nbsp;Gaurav Kaithwas","doi":"10.1016/j.toxrep.2025.101902","DOIUrl":null,"url":null,"abstract":"<div><div>In the present study, we aim to identify a potential drug candidate that targets the Monocarboxylate Transporter-4 (MCT-4) protein. Syrosingopine (SRY) is a well-established inhibitor of lactate transport through MCT-4. We screened 2,11,192 potential leads through ZINC database, which were atleast 50 % structurally similar with SYR. After in-depth analysis, 900 molecules were shortlisted based on Lipinski's rule, optimal molecular weight, binding energy, hydrogen bonding, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties that render them viable MCT-4 inhibitors. The outcome underscored Brucine (BRU) as the most promising lead molecule within a cohort of ten potential compounds. BRU is a monoterpenoid indole alkaloid and is used in the regulation of high blood pressure and other comparatively benign cardiac ailments. As such, no reports is available emphasizing the efficacy of BRU on lactate transport or mammary gland carcinoma. BRU demonstrated strong affinity for the MCT-4 transporter's catalytic domain, forming significant hydrophobic and polar interactions with essential amino acids at the binding site. BRU demonstrated significant cytotoxicity and increased the extracellular lactate levels in MCF-7 cells. The findings strongly encouraged BRU's effectiveness, offering promising paths for subsequent investigations.</div></div>","PeriodicalId":23129,"journal":{"name":"Toxicology Reports","volume":"14 ","pages":"Article 101902"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787605/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214750025000204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, we aim to identify a potential drug candidate that targets the Monocarboxylate Transporter-4 (MCT-4) protein. Syrosingopine (SRY) is a well-established inhibitor of lactate transport through MCT-4. We screened 2,11,192 potential leads through ZINC database, which were atleast 50 % structurally similar with SYR. After in-depth analysis, 900 molecules were shortlisted based on Lipinski's rule, optimal molecular weight, binding energy, hydrogen bonding, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties that render them viable MCT-4 inhibitors. The outcome underscored Brucine (BRU) as the most promising lead molecule within a cohort of ten potential compounds. BRU is a monoterpenoid indole alkaloid and is used in the regulation of high blood pressure and other comparatively benign cardiac ailments. As such, no reports is available emphasizing the efficacy of BRU on lactate transport or mammary gland carcinoma. BRU demonstrated strong affinity for the MCT-4 transporter's catalytic domain, forming significant hydrophobic and polar interactions with essential amino acids at the binding site. BRU demonstrated significant cytotoxicity and increased the extracellular lactate levels in MCF-7 cells. The findings strongly encouraged BRU's effectiveness, offering promising paths for subsequent investigations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxicology Reports
Toxicology Reports Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
7.60
自引率
0.00%
发文量
228
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信