Jianyong Zhong, Jing Liu, Ashley L Mutchler, Haichun Yang, Annet Kirabo, Elaine L Shelton, Valentina Kon
{"title":"Moving toward a better understanding of renal lymphatics: challenges and opportunities.","authors":"Jianyong Zhong, Jing Liu, Ashley L Mutchler, Haichun Yang, Annet Kirabo, Elaine L Shelton, Valentina Kon","doi":"10.1007/s00467-025-06692-7","DOIUrl":null,"url":null,"abstract":"<p><p>The development of lymphatic-specific markers has enabled detailed visualization of the lymphatic vascular network that has greatly enhanced our ability to explore this often-overlooked system. Lymphatics remove fluid, solutes, macromolecules, and cells from the interstitium and return them to circulation. The kidneys have lymphatics. As in other organs, the kidney lymphatic vessels are highly sensitive to changes in the local microenvironment. The sensitivity to its milieu may be especially relevant in kidneys because they are central in regulating fluid homeostasis and clearance of metabolites delivered into and eliminated from the renal interstitial compartment. Numerous physiologic conditions and diseases modify the renal interstitial volume, pressure, and composition that can, in turn, influence the growth and function of the renal lymphatics. The impact of the renal microenvironment is further heightened by the fact that kidneys are encapsulated. This review considers the development, structure, and function of the renal lymphatic vessels and explores how factors within the kidney interstitial compartment modify their structure and functionality. Moreover, although currently there are no pharmaceutical agents that specifically target the lymphatic network, we highlight several medications currently used in children with kidney disease and hypertension that have significant but underappreciated effects on lymphatics.</p>","PeriodicalId":19735,"journal":{"name":"Pediatric Nephrology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00467-025-06692-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of lymphatic-specific markers has enabled detailed visualization of the lymphatic vascular network that has greatly enhanced our ability to explore this often-overlooked system. Lymphatics remove fluid, solutes, macromolecules, and cells from the interstitium and return them to circulation. The kidneys have lymphatics. As in other organs, the kidney lymphatic vessels are highly sensitive to changes in the local microenvironment. The sensitivity to its milieu may be especially relevant in kidneys because they are central in regulating fluid homeostasis and clearance of metabolites delivered into and eliminated from the renal interstitial compartment. Numerous physiologic conditions and diseases modify the renal interstitial volume, pressure, and composition that can, in turn, influence the growth and function of the renal lymphatics. The impact of the renal microenvironment is further heightened by the fact that kidneys are encapsulated. This review considers the development, structure, and function of the renal lymphatic vessels and explores how factors within the kidney interstitial compartment modify their structure and functionality. Moreover, although currently there are no pharmaceutical agents that specifically target the lymphatic network, we highlight several medications currently used in children with kidney disease and hypertension that have significant but underappreciated effects on lymphatics.
期刊介绍:
International Pediatric Nephrology Association
Pediatric Nephrology publishes original clinical research related to acute and chronic diseases that affect renal function, blood pressure, and fluid and electrolyte disorders in children. Studies may involve medical, surgical, nutritional, physiologic, biochemical, genetic, pathologic or immunologic aspects of disease, imaging techniques or consequences of acute or chronic kidney disease. There are 12 issues per year that contain Editorial Commentaries, Reviews, Educational Reviews, Original Articles, Brief Reports, Rapid Communications, Clinical Quizzes, and Letters to the Editors.