Intrinsic and extrinsic modulators of human dental pulp stem cells: advancing strategies for tissue engineering applications.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fatemeh Kavakebian, Alireza Rezapour, Reihaneh Seyedebrahimi, Mohsen Eslami Farsani, Massoumeh Jabbari Fakhr, Saeedeh Zare Jalise, Shima Ababzadeh
{"title":"Intrinsic and extrinsic modulators of human dental pulp stem cells: advancing strategies for tissue engineering applications.","authors":"Fatemeh Kavakebian, Alireza Rezapour, Reihaneh Seyedebrahimi, Mohsen Eslami Farsani, Massoumeh Jabbari Fakhr, Saeedeh Zare Jalise, Shima Ababzadeh","doi":"10.1007/s11033-025-10281-0","DOIUrl":null,"url":null,"abstract":"<p><p>This review focuses on dental pulp stem cells (DPSCs) which are mesenchymal stem cells (MSCs) and originating from the neural crest. These cells possess a high capacity for self-renewal and multilineage differentiation. Because of these traits, they represent promising sources for tissue engineering, regenerative medicine, and clinical applications. The objective of this study was to assess the extrinsic and intrinsic factors influencing DPSC characteristics and their potential in tissue engineering. This review discusses the external and internal factors affecting DPSC properties, including proliferation, migration, differentiation, and gene expression post extraction. Additionally, it explores the impact of the microenvironment-its composition and physical properties-and genetic and epigenetic regulation on DPSC behavior. Variations in the microenvironment and genetic regulation play pivotal roles in modulating DPSC functions, including their proliferation and differentiation potential. Intrinsic and extrinsic factors are key barriers to realizing the full therapeutic potential of DPSCs. A deeper understanding of the extrinsic and intrinsic factors affecting DPSC behavior is critical for optimizing their use in regenerative medicine, particularly for dental and craniofacial applications. Although DPSCs hold significant promise, challenges remain, and this review provides insights into the current limitations and future directions for DPSC-based therapies. Researchers and clinicians are offered a comprehensive resource for advancing the field.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"52 1","pages":"190"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-025-10281-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This review focuses on dental pulp stem cells (DPSCs) which are mesenchymal stem cells (MSCs) and originating from the neural crest. These cells possess a high capacity for self-renewal and multilineage differentiation. Because of these traits, they represent promising sources for tissue engineering, regenerative medicine, and clinical applications. The objective of this study was to assess the extrinsic and intrinsic factors influencing DPSC characteristics and their potential in tissue engineering. This review discusses the external and internal factors affecting DPSC properties, including proliferation, migration, differentiation, and gene expression post extraction. Additionally, it explores the impact of the microenvironment-its composition and physical properties-and genetic and epigenetic regulation on DPSC behavior. Variations in the microenvironment and genetic regulation play pivotal roles in modulating DPSC functions, including their proliferation and differentiation potential. Intrinsic and extrinsic factors are key barriers to realizing the full therapeutic potential of DPSCs. A deeper understanding of the extrinsic and intrinsic factors affecting DPSC behavior is critical for optimizing their use in regenerative medicine, particularly for dental and craniofacial applications. Although DPSCs hold significant promise, challenges remain, and this review provides insights into the current limitations and future directions for DPSC-based therapies. Researchers and clinicians are offered a comprehensive resource for advancing the field.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biology Reports
Molecular Biology Reports 生物-生化与分子生物学
CiteScore
5.00
自引率
0.00%
发文量
1048
审稿时长
5.6 months
期刊介绍: Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信