Comparative survival of five porcine reproductive and respiratory syndrome virus strains on six fomites.

IF 1.7 Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Veterinary World Pub Date : 2024-12-01 Epub Date: 2024-12-13 DOI:10.14202/vetworld.2024.2774-2779
Angie Quinonez-Munoz, Nader M Sobhy, Sagar M Goyal
{"title":"Comparative survival of five porcine reproductive and respiratory syndrome virus strains on six fomites.","authors":"Angie Quinonez-Munoz, Nader M Sobhy, Sagar M Goyal","doi":"10.14202/vetworld.2024.2774-2779","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aim: </strong>Despite the availability of vaccines, porcine reproductive and respiratory syndrome virus (PRRSV) continues to cause disease outbreaks in pigs worldwide. One of the reasons for this problem is the frequent mutation of the virus, which creates new variants. This study was conducted to determine the survival of five PRRSV strains on four non-porous and two porous fomites at 22-25°C (room temperature).</p><p><strong>Materials and methods: </strong>Five strains of PRRSV (1-7-4, 1-8-4, VR 2332, 1-4-4 MN, and 1-4-4 SD) were used in this study. Circular pieces of aluminum, boot material, polyvinyl chloride, stainless steel, cardboard, and concrete were used as fomites. A small volume of each virus strain was placed on the fomite, followed by incubation at room temperature. The virus surviving at different time points was eluted in an eluent solution. Serial 10-fold dilutions of the eluate were inoculated in MARC-145 cells for virus titration. Multivariate analysis of variance (MANOVA) was used for statistical analysis, and <i>post hoc</i> analysis was used for multiple pairwise comparisons.</p><p><strong>Results: </strong>Three of the five strains were inactivated within 36 h on non-porous fomites; the remaining two survived for 72 h. On porous fomites, all five strains were inactivated within 12 h. MANOVA at p < 0.05 indicated that the inactivation of strains 1-7-4 and 1-4-4 SD was significant compared with the other strains. In addition, the number of virus titers was significantly reduced on stainless steel compared to other fomites.</p><p><strong>Conclusion: </strong>Our findings illustrate how the interaction between the PRRSV strain and fomite material affect viral stability over time. The results also provide an understanding of fomites' role in PRRSV epidemiology as indirect transmitters of the virus.</p>","PeriodicalId":23587,"journal":{"name":"Veterinary World","volume":"17 12","pages":"2774-2779"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784046/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary World","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14202/vetworld.2024.2774-2779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aim: Despite the availability of vaccines, porcine reproductive and respiratory syndrome virus (PRRSV) continues to cause disease outbreaks in pigs worldwide. One of the reasons for this problem is the frequent mutation of the virus, which creates new variants. This study was conducted to determine the survival of five PRRSV strains on four non-porous and two porous fomites at 22-25°C (room temperature).

Materials and methods: Five strains of PRRSV (1-7-4, 1-8-4, VR 2332, 1-4-4 MN, and 1-4-4 SD) were used in this study. Circular pieces of aluminum, boot material, polyvinyl chloride, stainless steel, cardboard, and concrete were used as fomites. A small volume of each virus strain was placed on the fomite, followed by incubation at room temperature. The virus surviving at different time points was eluted in an eluent solution. Serial 10-fold dilutions of the eluate were inoculated in MARC-145 cells for virus titration. Multivariate analysis of variance (MANOVA) was used for statistical analysis, and post hoc analysis was used for multiple pairwise comparisons.

Results: Three of the five strains were inactivated within 36 h on non-porous fomites; the remaining two survived for 72 h. On porous fomites, all five strains were inactivated within 12 h. MANOVA at p < 0.05 indicated that the inactivation of strains 1-7-4 and 1-4-4 SD was significant compared with the other strains. In addition, the number of virus titers was significantly reduced on stainless steel compared to other fomites.

Conclusion: Our findings illustrate how the interaction between the PRRSV strain and fomite material affect viral stability over time. The results also provide an understanding of fomites' role in PRRSV epidemiology as indirect transmitters of the virus.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Veterinary World
Veterinary World Multiple-
CiteScore
3.60
自引率
12.50%
发文量
317
审稿时长
16 weeks
期刊介绍: Veterinary World publishes high quality papers focusing on Veterinary and Animal Science. The fields of study are bacteriology, parasitology, pathology, virology, immunology, mycology, public health, biotechnology, meat science, fish diseases, nutrition, gynecology, genetics, wildlife, laboratory animals, animal models of human infections, prion diseases and epidemiology. Studies on zoonotic and emerging infections are highly appreciated. Review articles are highly appreciated. All articles published by Veterinary World are made freely and permanently accessible online. All articles to Veterinary World are posted online immediately as they are ready for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信