Prince Pal Singh, Nguyen Phuong Khanh Le, Uladzimir Karniychuk
{"title":"Infectious Subgenomic Amplicon Strategies for Japanese Encephalitis and West Nile Viruses","authors":"Prince Pal Singh, Nguyen Phuong Khanh Le, Uladzimir Karniychuk","doi":"10.1002/jmv.70205","DOIUrl":null,"url":null,"abstract":"<p>Classical methods for constructing infectious cDNA clones of flaviviruses are often hindered by instability and toxicity. The Infectious-Subgenomic-Amplicons (ISA) method is an advancement which utilizes overlapping DNA fragments representing viral genomic sequence and in-cell recombination to bypass bacterial plasmid assembly. However, the ISA method has limitations due to the toxicity of some ISA DNA fragments in bacteria during synthetic production. We validated modified ISA strategies for producing toxic ISA Japanese encephalitis virus (JEV) and West Nile virus (WNV) DNA fragments. Three approaches were explored, including subdividing toxic DNA fragments into two sub-fragments for synthetic clonal production, using a low-copy bacterial plasmid, and subdividing the toxic DNA fragments into four short overlapping sub-fragments, each up to 1.8 kb. The latter novel approach in ISA applications enabled the synthesis of entirely bacteria-free ISA DNA fragments. Our results demonstrate that subdividing toxic fragments into sub-fragments smaller than 1.8 kb for synthesis is the efficient strategy, circumventing the need for bacterial plasmids and ensuring rapid production of synthetic flaviviruses. This method also shortens the production timeline. We also compared the efficacy of JEV and WNV ISA in zinc finger antiviral protein 1 (ZAP) wild-type and knockout cells and found that knockout cells may be more effective for ISA rescue of flaviviruses, including CpG-enriched strains for live attenuated vaccines. The validated modified ISA strategies provide an efficient approach for producing synthetic JEV and WNV. This will enable rapid research during outbreaks of emerging flaviviruses by facilitating the quick generation of new virus variants.</p>","PeriodicalId":16354,"journal":{"name":"Journal of Medical Virology","volume":"97 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmv.70205","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Virology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmv.70205","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Classical methods for constructing infectious cDNA clones of flaviviruses are often hindered by instability and toxicity. The Infectious-Subgenomic-Amplicons (ISA) method is an advancement which utilizes overlapping DNA fragments representing viral genomic sequence and in-cell recombination to bypass bacterial plasmid assembly. However, the ISA method has limitations due to the toxicity of some ISA DNA fragments in bacteria during synthetic production. We validated modified ISA strategies for producing toxic ISA Japanese encephalitis virus (JEV) and West Nile virus (WNV) DNA fragments. Three approaches were explored, including subdividing toxic DNA fragments into two sub-fragments for synthetic clonal production, using a low-copy bacterial plasmid, and subdividing the toxic DNA fragments into four short overlapping sub-fragments, each up to 1.8 kb. The latter novel approach in ISA applications enabled the synthesis of entirely bacteria-free ISA DNA fragments. Our results demonstrate that subdividing toxic fragments into sub-fragments smaller than 1.8 kb for synthesis is the efficient strategy, circumventing the need for bacterial plasmids and ensuring rapid production of synthetic flaviviruses. This method also shortens the production timeline. We also compared the efficacy of JEV and WNV ISA in zinc finger antiviral protein 1 (ZAP) wild-type and knockout cells and found that knockout cells may be more effective for ISA rescue of flaviviruses, including CpG-enriched strains for live attenuated vaccines. The validated modified ISA strategies provide an efficient approach for producing synthetic JEV and WNV. This will enable rapid research during outbreaks of emerging flaviviruses by facilitating the quick generation of new virus variants.
期刊介绍:
The Journal of Medical Virology focuses on publishing original scientific papers on both basic and applied research related to viruses that affect humans. The journal publishes reports covering a wide range of topics, including the characterization, diagnosis, epidemiology, immunology, and pathogenesis of human virus infections. It also includes studies on virus morphology, genetics, replication, and interactions with host cells.
The intended readership of the journal includes virologists, microbiologists, immunologists, infectious disease specialists, diagnostic laboratory technologists, epidemiologists, hematologists, and cell biologists.
The Journal of Medical Virology is indexed and abstracted in various databases, including Abstracts in Anthropology (Sage), CABI, AgBiotech News & Information, National Agricultural Library, Biological Abstracts, Embase, Global Health, Web of Science, Veterinary Bulletin, and others.