Lactic acid bacteria from Ethiopian traditional beverage, Tella: technological and metabolic profiles for industrial application.

IF 3.3 4区 生物学 Q2 MICROBIOLOGY
Journal of Microbiology Pub Date : 2025-01-01 Epub Date: 2024-12-20 DOI:10.71150/jm.2409008
Gashaw Assefa Yehuala, Jaein Choe, Nurelegne Tefera Shibeshi, Kumsa Delessa, Asnake Desalegn, Mi-Kyung Park
{"title":"Lactic acid bacteria from Ethiopian traditional beverage, Tella: technological and metabolic profiles for industrial application.","authors":"Gashaw Assefa Yehuala, Jaein Choe, Nurelegne Tefera Shibeshi, Kumsa Delessa, Asnake Desalegn, Mi-Kyung Park","doi":"10.71150/jm.2409008","DOIUrl":null,"url":null,"abstract":"<p><p>Tella is a traditional beverage widely accepted by consumers, despite the lack of product consistency owing to its reliance on natural fermentation. This study aimed to identify potential industrial lactic acid bacteria (LAB) starter cultures based on their technological properties. Seven LAB strains isolated from Tella were characterized for their carbohydrate utilization, salt content, temperature, and acid tolerances, growth and acidification rates, and metabolite profiles. Most strains efficiently utilized various carbohydrates, with Lactiplantibacillus plantarum TDM41 showing exceptional versatility. The strains exhibited similar growth characteristics. Principal component analysis of stress tolerance properties revealed that L. plantarum TDM41, Pediococcus pentosaceus TAA01, and Leuconostoc mesenteroides TDB22 exhibited superior tolerance ability. Strong acidification properties were detected in the L. plantarum TDM41, P. pentosaceus TAA01, and Leuconostoc mesenteroides TDB22 strains after 24 h incubation at 30°C. L. plantarum TDM41 displayed the fastest acidification rate throughout the analysis period. All LAB strains produced significant amounts of diverse organic acids, including lactic acid, citric acid, acetic acid, malic acid, and succinic acid, with lactic acid being the primary acid produced by each strain. Overall, strains L. plantarum TDM41 and P. pentosaceus TAA01 prove to be potential candidates for Tella industrial starter cultures and similar cereal products owing to their robust technological properties.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":"63 1","pages":"e.2409008"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.71150/jm.2409008","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tella is a traditional beverage widely accepted by consumers, despite the lack of product consistency owing to its reliance on natural fermentation. This study aimed to identify potential industrial lactic acid bacteria (LAB) starter cultures based on their technological properties. Seven LAB strains isolated from Tella were characterized for their carbohydrate utilization, salt content, temperature, and acid tolerances, growth and acidification rates, and metabolite profiles. Most strains efficiently utilized various carbohydrates, with Lactiplantibacillus plantarum TDM41 showing exceptional versatility. The strains exhibited similar growth characteristics. Principal component analysis of stress tolerance properties revealed that L. plantarum TDM41, Pediococcus pentosaceus TAA01, and Leuconostoc mesenteroides TDB22 exhibited superior tolerance ability. Strong acidification properties were detected in the L. plantarum TDM41, P. pentosaceus TAA01, and Leuconostoc mesenteroides TDB22 strains after 24 h incubation at 30°C. L. plantarum TDM41 displayed the fastest acidification rate throughout the analysis period. All LAB strains produced significant amounts of diverse organic acids, including lactic acid, citric acid, acetic acid, malic acid, and succinic acid, with lactic acid being the primary acid produced by each strain. Overall, strains L. plantarum TDM41 and P. pentosaceus TAA01 prove to be potential candidates for Tella industrial starter cultures and similar cereal products owing to their robust technological properties.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Microbiology
Journal of Microbiology 生物-微生物学
CiteScore
5.70
自引率
3.30%
发文量
0
审稿时长
3 months
期刊介绍: Publishes papers that deal with research on microorganisms, including archaea, bacteria, yeasts, fungi, microalgae, protozoa, and simple eukaryotic microorganisms. Topics considered for publication include Microbial Systematics, Evolutionary Microbiology, Microbial Ecology, Environmental Microbiology, Microbial Genetics, Genomics, Molecular Biology, Microbial Physiology, Biochemistry, Microbial Pathogenesis, Host-Microbe Interaction, Systems Microbiology, Synthetic Microbiology, Bioinformatics and Virology. Manuscripts dealing with simple identification of microorganism(s), cloning of a known gene and its expression in a microbial host, and clinical statistics will not be considered for publication by JM.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信