Effect of circadian rhythm disruption induced by time-restricted feeding and exercise on oxidative stress and immune in mice.

IF 2 4区 医学 Q3 NUTRITION & DIETETICS
Journal of Clinical Biochemistry and Nutrition Pub Date : 2025-01-01 Epub Date: 2024-08-22 DOI:10.3164/jcbn.24-126
Yun-Shan Li, Hiroaki Fujihara, Koichi Fujisawa, Kazuaki Kawai
{"title":"Effect of circadian rhythm disruption induced by time-restricted feeding and exercise on oxidative stress and immune in mice.","authors":"Yun-Shan Li, Hiroaki Fujihara, Koichi Fujisawa, Kazuaki Kawai","doi":"10.3164/jcbn.24-126","DOIUrl":null,"url":null,"abstract":"<p><p>Frequent or long-term circadian disorders can lead to a range of health problems, including chronic insomnia, depression, chronic diseases, and cancer. It has also been shown that altering the feeding time of mice from night to day can result in circadian disorder. Recent studies have revealed complex interactions between circadian rhythm and oxidative stress. However, little is known about the impact of circadian rhythm disorders caused by time-restricted feeding on mental state, immune function, and oxidative DNA damage. In this study, we investigated the effects of circadian rhythm disruption by controlling the timing of feeding and exercise on oxidative DNA damage and immune responses in 8-week-old mice for 14 days. Body weight, daytime running wheel activity, serum interleukin-6 levels, urinary 8-hydroxy-2'-deoxyguanosine levels, and nuclear DNA (liver, lung, testes, and pancreas) were significantly increased in the night-restricted group compared with the control group. Additionally, the mice in the night-restricted group exhibited anxiety-like behavior. These results indicated that the circadian rhythm disruption due to abnormal dietary timing can lead to obesity, mental state dysregulation, immune function changes and oxidative DNA damage in mice. This oxidative DNA damage may contribute to the initiation and increased risk of cancer.</p>","PeriodicalId":15429,"journal":{"name":"Journal of Clinical Biochemistry and Nutrition","volume":"76 1","pages":"35-41"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782776/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Biochemistry and Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3164/jcbn.24-126","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0

Abstract

Frequent or long-term circadian disorders can lead to a range of health problems, including chronic insomnia, depression, chronic diseases, and cancer. It has also been shown that altering the feeding time of mice from night to day can result in circadian disorder. Recent studies have revealed complex interactions between circadian rhythm and oxidative stress. However, little is known about the impact of circadian rhythm disorders caused by time-restricted feeding on mental state, immune function, and oxidative DNA damage. In this study, we investigated the effects of circadian rhythm disruption by controlling the timing of feeding and exercise on oxidative DNA damage and immune responses in 8-week-old mice for 14 days. Body weight, daytime running wheel activity, serum interleukin-6 levels, urinary 8-hydroxy-2'-deoxyguanosine levels, and nuclear DNA (liver, lung, testes, and pancreas) were significantly increased in the night-restricted group compared with the control group. Additionally, the mice in the night-restricted group exhibited anxiety-like behavior. These results indicated that the circadian rhythm disruption due to abnormal dietary timing can lead to obesity, mental state dysregulation, immune function changes and oxidative DNA damage in mice. This oxidative DNA damage may contribute to the initiation and increased risk of cancer.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
8.30%
发文量
57
审稿时长
6-12 weeks
期刊介绍: Journal of Clinical Biochemistry and Nutrition (JCBN) is an international, interdisciplinary publication encompassing chemical, biochemical, physiological, pathological, toxicological and medical approaches to research on lipid peroxidation, free radicals, oxidative stress and nutrition. The Journal welcomes original contributions dealing with all aspects of clinical biochemistry and clinical nutrition including both in vitro and in vivo studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信