Lactate Ameliorates Kainic Acid-Induced Neuroinflammation and Cognitive Impairment via the Chemokine Signaling Pathway in Mice.

IF 4.2 2区 医学 Q2 IMMUNOLOGY
Journal of Inflammation Research Pub Date : 2025-01-27 eCollection Date: 2025-01-01 DOI:10.2147/JIR.S498738
Xiaoqi Chu, Yusong Ge, Chao Geng, Peipei Cao, Penghu Wei, Bin Fu, Zihao Deng, Yuhao Li, Guoguang Zhao
{"title":"Lactate Ameliorates Kainic Acid-Induced Neuroinflammation and Cognitive Impairment via the Chemokine Signaling Pathway in Mice.","authors":"Xiaoqi Chu, Yusong Ge, Chao Geng, Peipei Cao, Penghu Wei, Bin Fu, Zihao Deng, Yuhao Li, Guoguang Zhao","doi":"10.2147/JIR.S498738","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Lactate, previously considered a metabolic waste product, has been shown to have neuroprotective potential. This study aims to investigate the impact of lactate intervention and its underlying mechanisms on epilepsy.</p><p><strong>Methods: </strong>HT22 cells were stimulated with glutamate to construct an excitotoxicity cell model. An acute epilepsy model was established in mice by kainic acid induction. The neuronal damage, microglial activation, inflammatory responses, and functional changes were determined by TUNEL assays, immunohistochemistry, quantitative real-time polymerase chain reaction and behavioral tests. The differentially gene expression and functional enrichment were analyzed with RNA sequencing.</p><p><strong>Results: </strong>The in vitro lactate intervention reduced the number of apoptotic cells, the release of inflammatory factors, and the expression of vesicular glutamate transporter 1. In mice with acute epilepsy, lactate treatment mitigated neuronal damage, microglial activation, and inflammatory responses in the hippocampus and ameliorated anxiety-like behavior and cognitive impairment.</p><p><strong>Conclusion: </strong>Lactate exerts therapeutic effects on epilepsy through the chemokine signaling pathway. The neuroinflammation is an important contributor to cognitive impairment. Targeting inflammatory pathways is a promising strategy for improving the prognosis of epilepsy.</p>","PeriodicalId":16107,"journal":{"name":"Journal of Inflammation Research","volume":"18 ","pages":"1235-1254"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784417/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JIR.S498738","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Lactate, previously considered a metabolic waste product, has been shown to have neuroprotective potential. This study aims to investigate the impact of lactate intervention and its underlying mechanisms on epilepsy.

Methods: HT22 cells were stimulated with glutamate to construct an excitotoxicity cell model. An acute epilepsy model was established in mice by kainic acid induction. The neuronal damage, microglial activation, inflammatory responses, and functional changes were determined by TUNEL assays, immunohistochemistry, quantitative real-time polymerase chain reaction and behavioral tests. The differentially gene expression and functional enrichment were analyzed with RNA sequencing.

Results: The in vitro lactate intervention reduced the number of apoptotic cells, the release of inflammatory factors, and the expression of vesicular glutamate transporter 1. In mice with acute epilepsy, lactate treatment mitigated neuronal damage, microglial activation, and inflammatory responses in the hippocampus and ameliorated anxiety-like behavior and cognitive impairment.

Conclusion: Lactate exerts therapeutic effects on epilepsy through the chemokine signaling pathway. The neuroinflammation is an important contributor to cognitive impairment. Targeting inflammatory pathways is a promising strategy for improving the prognosis of epilepsy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inflammation Research
Journal of Inflammation Research Immunology and Microbiology-Immunology
CiteScore
6.10
自引率
2.20%
发文量
658
审稿时长
16 weeks
期刊介绍: An international, peer-reviewed, open access, online journal that welcomes laboratory and clinical findings on the molecular basis, cell biology and pharmacology of inflammation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信