Max A Thorwald, Naomi S Sta Maria, Ararat Chakhoyan, Peggy A O'Day, Russell E Jacobs, Berislav Zlokovic, Caleb E Finch
{"title":"Iron chelation by oral deferoxamine treatment decreased brain iron and iron signaling proteins.","authors":"Max A Thorwald, Naomi S Sta Maria, Ararat Chakhoyan, Peggy A O'Day, Russell E Jacobs, Berislav Zlokovic, Caleb E Finch","doi":"10.1177/13872877241313031","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Deferoxamine (DFO) and other iron chelators are clinically used for cancer and stroke. They may also be useful for Alzheimer's disease (AD) to diminish iron from microbleeds. DFO may also stimulate antioxidant membrane repair which is impaired during AD. DFO and other chelators do enter the brain despite some contrary reports.</p><p><strong>Objective: </strong>Low dose, oral DFO was given in lab chow to wildtype (WT) C57BL/6 mice to evaluate potential impact on iron levels, iron-signaling and storage proteins, and amyloid-β protein precursor (AβPP) and processing enzymes. Young WT mice do not have microbleeds or disrupted blood-brain barrier of AD mice.</p><p><strong>Methods: </strong>Iron was measured by MRI and chemically after two weeks of dietary DFO. Cerebral cortex was examined for changes in iron metabolism, antioxidant signaling, and AβPP processing by western blot.</p><p><strong>Results: </strong>DFO decreased brain iron 18% (<i>p</i> < 0.01) estimated by R2 MRI and decreased seven major proteins that mediate iron metabolism by at least 25%. The iron storage proteins ferritin light and heavy chain decreased by at least 30%. AβPP and secretase enzymes also decreased by 30%.</p><p><strong>Conclusions: </strong>WT mice respond to DFO with decreased AβPP, amyloid processing enzymes, and antioxidant repair. Potential DFO treatment for early-stage AD by DFO should consider the benefits of lowered AβPP and secretase enzymes.</p>","PeriodicalId":14929,"journal":{"name":"Journal of Alzheimer's Disease","volume":" ","pages":"13872877241313031"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alzheimer's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/13872877241313031","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Deferoxamine (DFO) and other iron chelators are clinically used for cancer and stroke. They may also be useful for Alzheimer's disease (AD) to diminish iron from microbleeds. DFO may also stimulate antioxidant membrane repair which is impaired during AD. DFO and other chelators do enter the brain despite some contrary reports.
Objective: Low dose, oral DFO was given in lab chow to wildtype (WT) C57BL/6 mice to evaluate potential impact on iron levels, iron-signaling and storage proteins, and amyloid-β protein precursor (AβPP) and processing enzymes. Young WT mice do not have microbleeds or disrupted blood-brain barrier of AD mice.
Methods: Iron was measured by MRI and chemically after two weeks of dietary DFO. Cerebral cortex was examined for changes in iron metabolism, antioxidant signaling, and AβPP processing by western blot.
Results: DFO decreased brain iron 18% (p < 0.01) estimated by R2 MRI and decreased seven major proteins that mediate iron metabolism by at least 25%. The iron storage proteins ferritin light and heavy chain decreased by at least 30%. AβPP and secretase enzymes also decreased by 30%.
Conclusions: WT mice respond to DFO with decreased AβPP, amyloid processing enzymes, and antioxidant repair. Potential DFO treatment for early-stage AD by DFO should consider the benefits of lowered AβPP and secretase enzymes.
期刊介绍:
The Journal of Alzheimer''s Disease (JAD) is an international multidisciplinary journal to facilitate progress in understanding the etiology, pathogenesis, epidemiology, genetics, behavior, treatment and psychology of Alzheimer''s disease. The journal publishes research reports, reviews, short communications, hypotheses, ethics reviews, book reviews, and letters-to-the-editor. The journal is dedicated to providing an open forum for original research that will expedite our fundamental understanding of Alzheimer''s disease.