Development and Validation of Risk Assessment Model for Pelvic Organ Prolapse Based on A Retrospective Study with Machine Learning Algorithms.

IF 1.8 3区 医学 Q3 OBSTETRICS & GYNECOLOGY
Ling Mei, Linbo Gao, Tao Wang, Dong Yang, Weixing Chen, Xiaoyu Niu
{"title":"Development and Validation of Risk Assessment Model for Pelvic Organ Prolapse Based on A Retrospective Study with Machine Learning Algorithms.","authors":"Ling Mei, Linbo Gao, Tao Wang, Dong Yang, Weixing Chen, Xiaoyu Niu","doi":"10.1007/s00192-025-06046-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction and hypothesis: </strong>We aimed to develop and validate a clinically applicable risk assessment model for identifying women at a high risk of pelvic organ prolapse (POP) based on a retrospective practice.</p><p><strong>Methods: </strong>This study enrolled patients with and without POP between January 2019 and December 2021. Clinical data were collected and machine learning models were applied, such as multilayer perceptron, logistic regression, random forest (RF), light gradient boosting machine and extreme gradient boosting. Two datasets were constructed, one comprising all variables and the other excluding physical examination variables. Two versions of the machine learning model were developed. One was for professional doctors, and the other was for community-health providers. The area under the curve (AUC) and its confidence interval (CI), accuracy, F1 score, sensitivity, and specificity were calculated to evaluate the model's performance. The Shapley Additive Explanations method was used to visualize and interpret the model output.</p><p><strong>Results: </strong>A total of 16,416 women were recruited, with 8,314 and 8,102 in the POP and non-POP groups respectively. Eighty-seven variables were recorded. Among all candidate models, the RF model with 13 variables showed the best performance, with an AUC of 0.806 (95% CI 0.793-0.817), accuracy of 0.723, F1 of 0.731, sensitivity of 0.742, and specificity of 0.703. Excluding the physical examination variables, the RF model with 11 variables showed an AUC, accuracy, F1 score, sensitivity, and specificity of 0.716, 0.652, 0.688, 0.757, and 0.545 respectively.</p><p><strong>Conclusions: </strong>We constructed a clinically applicable risk warning system that will help clinicians to identify women at a high risk of POP.</p>","PeriodicalId":14355,"journal":{"name":"International Urogynecology Journal","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Urogynecology Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00192-025-06046-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction and hypothesis: We aimed to develop and validate a clinically applicable risk assessment model for identifying women at a high risk of pelvic organ prolapse (POP) based on a retrospective practice.

Methods: This study enrolled patients with and without POP between January 2019 and December 2021. Clinical data were collected and machine learning models were applied, such as multilayer perceptron, logistic regression, random forest (RF), light gradient boosting machine and extreme gradient boosting. Two datasets were constructed, one comprising all variables and the other excluding physical examination variables. Two versions of the machine learning model were developed. One was for professional doctors, and the other was for community-health providers. The area under the curve (AUC) and its confidence interval (CI), accuracy, F1 score, sensitivity, and specificity were calculated to evaluate the model's performance. The Shapley Additive Explanations method was used to visualize and interpret the model output.

Results: A total of 16,416 women were recruited, with 8,314 and 8,102 in the POP and non-POP groups respectively. Eighty-seven variables were recorded. Among all candidate models, the RF model with 13 variables showed the best performance, with an AUC of 0.806 (95% CI 0.793-0.817), accuracy of 0.723, F1 of 0.731, sensitivity of 0.742, and specificity of 0.703. Excluding the physical examination variables, the RF model with 11 variables showed an AUC, accuracy, F1 score, sensitivity, and specificity of 0.716, 0.652, 0.688, 0.757, and 0.545 respectively.

Conclusions: We constructed a clinically applicable risk warning system that will help clinicians to identify women at a high risk of POP.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
22.20%
发文量
406
审稿时长
3-6 weeks
期刊介绍: The International Urogynecology Journal is the official journal of the International Urogynecological Association (IUGA).The International Urogynecology Journal has evolved in response to a perceived need amongst the clinicians, scientists, and researchers active in the field of urogynecology and pelvic floor disorders. Gynecologists, urologists, physiotherapists, nurses and basic scientists require regular means of communication within this field of pelvic floor dysfunction to express new ideas and research, and to review clinical practice in the diagnosis and treatment of women with disorders of the pelvic floor. This Journal has adopted the peer review process for all original contributions and will maintain high standards with regard to the research published therein. The clinical approach to urogynecology and pelvic floor disorders will be emphasized with each issue containing clinically relevant material that will be immediately applicable for clinical medicine. This publication covers all aspects of the field in an interdisciplinary fashion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信