A Multi-View Feature-Based Interpretable Deep Learning Framework for Drug-Drug Interaction Prediction.

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Zihui Cheng, Zhaojing Wang, Xianfang Tang, Xinrong Hu, Fei Yang, Xiaoyun Yan
{"title":"A Multi-View Feature-Based Interpretable Deep Learning Framework for Drug-Drug Interaction Prediction.","authors":"Zihui Cheng, Zhaojing Wang, Xianfang Tang, Xinrong Hu, Fei Yang, Xiaoyun Yan","doi":"10.1007/s12539-025-00687-6","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-drug interactions (DDIs) can result in deleterious consequences when patients take multiple medications simultaneously, emphasizing the critical need for accurate DDI prediction. Computational methods for DDI prediction have garnered recent attention. However, current approaches concentrate solely on single-view features, such as atomic-view or substructure-view features, limiting predictive capacity. The scarcity of research on interpretability studies based on multi-view features is crucial for tracing interactions. Addressing this gap, we present MI-DDI, a multi-view feature-based interpretable deep learning framework for DDI. To fully extract multi-view features, we employ a Message Passing Neural Network (MPNN) to learn atomic features from molecular graphs generated by RDkit, and transformer encoders are used to learn substructure-view embeddings from drug SMILES simultaneously. These atomic-view and substructure-view features are then amalgamated into a holistic drug embedding matrix. Subsequently, an intricately designed interaction module not only establishes a tractable path for understanding interactions but also directly informs the construction of weight matrices, enabling precise and interpretable interaction predictions. Validation on the BIOSNAP dataset and DrugBank dataset demonstrates MI-DDI's superiority. It surpasses the current benchmarks by a substantial average of 3% on BIOSNAP and 1% on DrugBank. Additional experiments underscore the significance of atomic-view information for DDI prediction and confirm that our interaction module indeed learns more effective information for DDI prediction. The source codes are available at https://github.com/ZihuiCheng/MI-DDI .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00687-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Drug-drug interactions (DDIs) can result in deleterious consequences when patients take multiple medications simultaneously, emphasizing the critical need for accurate DDI prediction. Computational methods for DDI prediction have garnered recent attention. However, current approaches concentrate solely on single-view features, such as atomic-view or substructure-view features, limiting predictive capacity. The scarcity of research on interpretability studies based on multi-view features is crucial for tracing interactions. Addressing this gap, we present MI-DDI, a multi-view feature-based interpretable deep learning framework for DDI. To fully extract multi-view features, we employ a Message Passing Neural Network (MPNN) to learn atomic features from molecular graphs generated by RDkit, and transformer encoders are used to learn substructure-view embeddings from drug SMILES simultaneously. These atomic-view and substructure-view features are then amalgamated into a holistic drug embedding matrix. Subsequently, an intricately designed interaction module not only establishes a tractable path for understanding interactions but also directly informs the construction of weight matrices, enabling precise and interpretable interaction predictions. Validation on the BIOSNAP dataset and DrugBank dataset demonstrates MI-DDI's superiority. It surpasses the current benchmarks by a substantial average of 3% on BIOSNAP and 1% on DrugBank. Additional experiments underscore the significance of atomic-view information for DDI prediction and confirm that our interaction module indeed learns more effective information for DDI prediction. The source codes are available at https://github.com/ZihuiCheng/MI-DDI .

求助全文
约1分钟内获得全文 求助全文
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信