Evaluation of rapid amplicon-based nanopore sequencing using the latest chemistry for accurate whole genome analysis of influenza A virus in clinical samples.

IF 1.3 4区 医学 Q4 INFECTIOUS DISEASES
Yumani Kuba, Nobuhiro Takemae, Satoshi Kawato, Kunihiro Oba, Kiyosu Taniguchi, Tsutomu Kageyama
{"title":"Evaluation of rapid amplicon-based nanopore sequencing using the latest chemistry for accurate whole genome analysis of influenza A virus in clinical samples.","authors":"Yumani Kuba, Nobuhiro Takemae, Satoshi Kawato, Kunihiro Oba, Kiyosu Taniguchi, Tsutomu Kageyama","doi":"10.7883/yoken.JJID.2024.400","DOIUrl":null,"url":null,"abstract":"<p><p>MinION sequencing is widely used to sequence influenza A virus (IAV) genomes; however, the accuracy and utility of this approach, using the latest chemistry to obtain whole viral genome sequences directly from clinical samples, remain insufficiently investigated. We evaluated the sequencing accuracy of combining simultaneous multisegment one-step RT-PCR and MinION sequencing using various subtypes of 13 IAV isolates. The latest R10.4.1 chemistry significantly improved sequencing accuracy, achieving ≥99.993% identity with Illumina MiSeq results and reducing the single nucleotide deletion in homopolymer regions. Applying this method to 11 clinical samples enabled rapid subtype identification and the acquisition of eight full-length IAV genomes. In four of these samples, subtype identification of HA and NA was achieved within 20 min after the start of sequencing and a full-length IAV genome was obtained within 7 h after RNA extraction. However, there was concern that cross barcode misassignment during demultiplexing affected data interpretation, particularly for samples with low viral genome copy numbers. This approach can be used for the rapid identification of IAV subtypes and accurate acquisition of full IAV genome sequences from clinical samples, although careful data analysis is required for the multiplex sequencing of clinical samples with low viral genome copy numbers.</p>","PeriodicalId":14608,"journal":{"name":"Japanese journal of infectious diseases","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese journal of infectious diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7883/yoken.JJID.2024.400","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

MinION sequencing is widely used to sequence influenza A virus (IAV) genomes; however, the accuracy and utility of this approach, using the latest chemistry to obtain whole viral genome sequences directly from clinical samples, remain insufficiently investigated. We evaluated the sequencing accuracy of combining simultaneous multisegment one-step RT-PCR and MinION sequencing using various subtypes of 13 IAV isolates. The latest R10.4.1 chemistry significantly improved sequencing accuracy, achieving ≥99.993% identity with Illumina MiSeq results and reducing the single nucleotide deletion in homopolymer regions. Applying this method to 11 clinical samples enabled rapid subtype identification and the acquisition of eight full-length IAV genomes. In four of these samples, subtype identification of HA and NA was achieved within 20 min after the start of sequencing and a full-length IAV genome was obtained within 7 h after RNA extraction. However, there was concern that cross barcode misassignment during demultiplexing affected data interpretation, particularly for samples with low viral genome copy numbers. This approach can be used for the rapid identification of IAV subtypes and accurate acquisition of full IAV genome sequences from clinical samples, although careful data analysis is required for the multiplex sequencing of clinical samples with low viral genome copy numbers.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
4.50%
发文量
172
审稿时长
2 months
期刊介绍: Japanese Journal of Infectious Diseases (JJID), an official bimonthly publication of National Institute of Infectious Diseases, Japan, publishes papers dealing with basic research on infectious diseases relevant to humans in the fields of bacteriology, virology, mycology, parasitology, medical entomology, vaccinology, and toxinology. Pathology, immunology, biochemistry, and blood safety related to microbial pathogens are among the fields covered. Sections include: original papers, short communications, epidemiological reports, methods, laboratory and epidemiology communications, letters to the editor, and reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信