The application of a clinical-multimodal ultrasound radiomics model for predicting cervical lymph node metastasis of thyroid papillary carcinoma.

IF 3.5 3区 医学 Q2 ONCOLOGY
Frontiers in Oncology Pub Date : 2025-01-17 eCollection Date: 2024-01-01 DOI:10.3389/fonc.2024.1507953
Chang Liu, Shangjie Yang, Tian Xue, Qian Zhang, Yanjing Zhang, Yufang Zhao, Guolin Yin, Xiaohui Yan, Ping Liang, Liping Liu
{"title":"The application of a clinical-multimodal ultrasound radiomics model for predicting cervical lymph node metastasis of thyroid papillary carcinoma.","authors":"Chang Liu, Shangjie Yang, Tian Xue, Qian Zhang, Yanjing Zhang, Yufang Zhao, Guolin Yin, Xiaohui Yan, Ping Liang, Liping Liu","doi":"10.3389/fonc.2024.1507953","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>PTC (papillary thyroid cancer) is a lymphotropic malignancy associated with cervical lymph node metastasis (CLNM, including central and lateral LNM), which compromises the effect of treatment and prognosis of patients. Accurate preoperative identification will provide valuable reference information for the formulation of diagnostic and treatment strategies. The aim of this study was to develop and validate a clinical-multimodal ultrasound radiomics model for predicting CLNM of PTC.</p><p><strong>Methods: </strong>One hundred sixty-four patients with PTC who underwent treatment at our hospital between March 2016 and December 2021 were included in this study. The patients were grouped into a training cohort (n=115) and a validation cohort (n=49). Radiomic features were extracted from the conventional ultrasound (US), contrast-enhanced ultrasound (CEUS) and strain elastography-ultrasound (SE-US) images of patients with PTC. Multivariate logistic regression analysis was used to identify the independent risk factors. FAE software was used for radiomic feature extraction and the construction of different prediction models. The diagnostic performance of each model was evaluated and compared in terms of the area under the curve (AUC), sensitivity, specificity, accuracy, negative predictive value (NPV) and positive predictive value (PPV). RStudio software was used to develop the decision curve and assess the clinical value of the prediction model.</p><p><strong>Results: </strong>The clinical-multimodal ultrasound radiomics model developed in this study can successfully detect CLNM in PTC patients. A total of 3720 radiomic features (930 features per modality) were extracted from the ROIs of the multimodal images, and 15 representative features were ultimately screened. The combined model showed the best prediction performance in both the training and validation cohorts, with AUCs of 0.957 (95% CI: 0.918-0.987) and 0.932 (95% CI: 0.822-0.984), respectively. Decision curve analysis revealed that the combined model was superior to the other models.</p><p><strong>Conclusion: </strong>The clinical-multimodal ultrasound radiomics model constructed with multimodal ultrasound radiomic features and clinical risk factors has favorable potential and high diagnostic value for predicting CLNM in PTC patients.</p>","PeriodicalId":12482,"journal":{"name":"Frontiers in Oncology","volume":"14 ","pages":"1507953"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782237/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fonc.2024.1507953","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: PTC (papillary thyroid cancer) is a lymphotropic malignancy associated with cervical lymph node metastasis (CLNM, including central and lateral LNM), which compromises the effect of treatment and prognosis of patients. Accurate preoperative identification will provide valuable reference information for the formulation of diagnostic and treatment strategies. The aim of this study was to develop and validate a clinical-multimodal ultrasound radiomics model for predicting CLNM of PTC.

Methods: One hundred sixty-four patients with PTC who underwent treatment at our hospital between March 2016 and December 2021 were included in this study. The patients were grouped into a training cohort (n=115) and a validation cohort (n=49). Radiomic features were extracted from the conventional ultrasound (US), contrast-enhanced ultrasound (CEUS) and strain elastography-ultrasound (SE-US) images of patients with PTC. Multivariate logistic regression analysis was used to identify the independent risk factors. FAE software was used for radiomic feature extraction and the construction of different prediction models. The diagnostic performance of each model was evaluated and compared in terms of the area under the curve (AUC), sensitivity, specificity, accuracy, negative predictive value (NPV) and positive predictive value (PPV). RStudio software was used to develop the decision curve and assess the clinical value of the prediction model.

Results: The clinical-multimodal ultrasound radiomics model developed in this study can successfully detect CLNM in PTC patients. A total of 3720 radiomic features (930 features per modality) were extracted from the ROIs of the multimodal images, and 15 representative features were ultimately screened. The combined model showed the best prediction performance in both the training and validation cohorts, with AUCs of 0.957 (95% CI: 0.918-0.987) and 0.932 (95% CI: 0.822-0.984), respectively. Decision curve analysis revealed that the combined model was superior to the other models.

Conclusion: The clinical-multimodal ultrasound radiomics model constructed with multimodal ultrasound radiomic features and clinical risk factors has favorable potential and high diagnostic value for predicting CLNM in PTC patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Oncology
Frontiers in Oncology Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
6.20
自引率
10.60%
发文量
6641
审稿时长
14 weeks
期刊介绍: Cancer Imaging and Diagnosis is dedicated to the publication of results from clinical and research studies applied to cancer diagnosis and treatment. The section aims to publish studies from the entire field of cancer imaging: results from routine use of clinical imaging in both radiology and nuclear medicine, results from clinical trials, experimental molecular imaging in humans and small animals, research on new contrast agents in CT, MRI, ultrasound, publication of new technical applications and processing algorithms to improve the standardization of quantitative imaging and image guided interventions for the diagnosis and treatment of cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信