Network analysis reveals potential mechanisms that determine the cellular identity of keratinocytes and corneal epithelial cells through the Hox/Gtl2-Dio3 miRNA axis.

IF 4.6 2区 生物学 Q2 CELL BIOLOGY
Frontiers in Cell and Developmental Biology Pub Date : 2025-01-17 eCollection Date: 2025-01-01 DOI:10.3389/fcell.2025.1475334
Yanjie Guo, Weini Wu, Haoyu Chen, Xueqi Wang, Yi Zhang, Shuaipeng Li, Xueyi Yang
{"title":"Network analysis reveals potential mechanisms that determine the cellular identity of keratinocytes and corneal epithelial cells through the Hox/Gtl2-Dio3 miRNA axis.","authors":"Yanjie Guo, Weini Wu, Haoyu Chen, Xueqi Wang, Yi Zhang, Shuaipeng Li, Xueyi Yang","doi":"10.3389/fcell.2025.1475334","DOIUrl":null,"url":null,"abstract":"<p><p>During embryonic development, both corneal epithelial cells (CECs) and keratinocytes (KCs) originate from the surface ectoderm. As a result of this shared origin, corneal epithelial cells may exhibit the same characteristics as the skin epidermis in pathological situations, while keratinocytes are ideal seed cells for tissue-engineered corneas. However, how the identities of keratinocytes and corneal epithelial cells are determined is currently unclear. In this study, to investigate the molecular mechanisms determining the identity of keratinocytes and corneal epithelial cells, small RNA and mRNA sequencing analyses of these two cell types were performed. Analysis of the sequencing data revealed that almost all the miRNAs in the Gtl2-Dio3 imprinting region were highly expressed in keratinocytes and accounted for 30% of all differentially expressed miRNAs (DEMs). Since all the genes in the Gtl2-Dio3 imprinting region form a long polycistronic RNA under the control of the Gtl2 promoter, we next examined the expression of transcription factors and their binding near the Gtl2 locus. The findings indicated that the homeobox family dominated the differentially expressed transcription factors, and almost all <i>Hox</i> genes were silenced in corneal epithelial cells. Transcription binding site prediction and ChIP-seq revealed the binding of Hox proteins near the Gtl2 locus. Analysis of the Gtl-Dio3 miRNA target genes indicated that these miRNAs mainly regulate the Wnt signaling pathway and the PI3K-Akt signaling pathway. The crucial transcription factors in corneal epithelial cells, <i>Pax6</i>, <i>Otx2</i>, and <i>Foxc1</i>, are also targets of Gtl-Dio3 miRNAs. Our study revealed potential mechanisms that determine the cellular identity of keratinocytes and corneal epithelial cells through the Hox/Gtl2-Dio3 miRNA axis, which provides a new perspective for understanding the developmental regulation of corneal epithelial cells and the mechanisms of corneal opacity, as well as for establishing the groundwork for promoting the transdifferentiation of keratinocytes into corneal epithelial cells.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"13 ","pages":"1475334"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782130/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2025.1475334","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

During embryonic development, both corneal epithelial cells (CECs) and keratinocytes (KCs) originate from the surface ectoderm. As a result of this shared origin, corneal epithelial cells may exhibit the same characteristics as the skin epidermis in pathological situations, while keratinocytes are ideal seed cells for tissue-engineered corneas. However, how the identities of keratinocytes and corneal epithelial cells are determined is currently unclear. In this study, to investigate the molecular mechanisms determining the identity of keratinocytes and corneal epithelial cells, small RNA and mRNA sequencing analyses of these two cell types were performed. Analysis of the sequencing data revealed that almost all the miRNAs in the Gtl2-Dio3 imprinting region were highly expressed in keratinocytes and accounted for 30% of all differentially expressed miRNAs (DEMs). Since all the genes in the Gtl2-Dio3 imprinting region form a long polycistronic RNA under the control of the Gtl2 promoter, we next examined the expression of transcription factors and their binding near the Gtl2 locus. The findings indicated that the homeobox family dominated the differentially expressed transcription factors, and almost all Hox genes were silenced in corneal epithelial cells. Transcription binding site prediction and ChIP-seq revealed the binding of Hox proteins near the Gtl2 locus. Analysis of the Gtl-Dio3 miRNA target genes indicated that these miRNAs mainly regulate the Wnt signaling pathway and the PI3K-Akt signaling pathway. The crucial transcription factors in corneal epithelial cells, Pax6, Otx2, and Foxc1, are also targets of Gtl-Dio3 miRNAs. Our study revealed potential mechanisms that determine the cellular identity of keratinocytes and corneal epithelial cells through the Hox/Gtl2-Dio3 miRNA axis, which provides a new perspective for understanding the developmental regulation of corneal epithelial cells and the mechanisms of corneal opacity, as well as for establishing the groundwork for promoting the transdifferentiation of keratinocytes into corneal epithelial cells.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Cell and Developmental Biology
Frontiers in Cell and Developmental Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
9.70
自引率
3.60%
发文量
2531
审稿时长
12 weeks
期刊介绍: Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board. The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology. With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信