Ju Hwan Jeong, Sun-Ok Kim, Seong Cheol Min, Eung-Gook Kim, Min-Suk Song, Eun-Young Shin
{"title":"Regorafenib as a potential drug for severe COVID-19: inhibition of inflammasome activation in mice.","authors":"Ju Hwan Jeong, Sun-Ok Kim, Seong Cheol Min, Eung-Gook Kim, Min-Suk Song, Eun-Young Shin","doi":"10.1002/2211-5463.70002","DOIUrl":null,"url":null,"abstract":"<p><p>SARS-CoV-2 infection can lead to severe COVID-19, particularly in elderly individuals and those with compromised immunity. Cellular senescence has been implicated as a key pathogenic mechanism. This study investigated the therapeutic potential of regorafenib, a previously characterized senomorphic drug, for severe COVID-19. SARS-CoV-2 virus-infected K18-hACE2 mice, overexpressing the human ACE2 receptor, exhibited 100% mortality by 10 days post infection. Regorafenib treatment significantly improved survival rates, approximately 43% remaining alive. Mechanistically, regorafenib effectively suppressed type I and II interferon and cytokine signaling. Notably, regorafenib inhibited NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, a key driver of the cytokine storm associated with severe COVID-19. Our findings elucidate the molecular mechanisms underlying therapeutic effects of regorafenib and suggest its potential use as a promising treatment option for severe COVID-19.</p>","PeriodicalId":12187,"journal":{"name":"FEBS Open Bio","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Open Bio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/2211-5463.70002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
SARS-CoV-2 infection can lead to severe COVID-19, particularly in elderly individuals and those with compromised immunity. Cellular senescence has been implicated as a key pathogenic mechanism. This study investigated the therapeutic potential of regorafenib, a previously characterized senomorphic drug, for severe COVID-19. SARS-CoV-2 virus-infected K18-hACE2 mice, overexpressing the human ACE2 receptor, exhibited 100% mortality by 10 days post infection. Regorafenib treatment significantly improved survival rates, approximately 43% remaining alive. Mechanistically, regorafenib effectively suppressed type I and II interferon and cytokine signaling. Notably, regorafenib inhibited NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, a key driver of the cytokine storm associated with severe COVID-19. Our findings elucidate the molecular mechanisms underlying therapeutic effects of regorafenib and suggest its potential use as a promising treatment option for severe COVID-19.
期刊介绍:
FEBS Open Bio is an online-only open access journal for the rapid publication of research articles in molecular and cellular life sciences in both health and disease. The journal''s peer review process focuses on the technical soundness of papers, leaving the assessment of their impact and importance to the scientific community.
FEBS Open Bio is owned by the Federation of European Biochemical Societies (FEBS), a not-for-profit organization, and is published on behalf of FEBS by FEBS Press and Wiley. Any income from the journal will be used to support scientists through fellowships, courses, travel grants, prizes and other FEBS initiatives.