Apoorva Karekal, Remie Mandawe, Cameron Chun, Sai Kiran Byri, Danitza Cheline, Serena Ortiz, Shawn Hochman, Katherine A Wilkinson
{"title":"Optogenetic methods to stimulate gamma motor neuron axons ex vivo.","authors":"Apoorva Karekal, Remie Mandawe, Cameron Chun, Sai Kiran Byri, Danitza Cheline, Serena Ortiz, Shawn Hochman, Katherine A Wilkinson","doi":"10.1113/EP092359","DOIUrl":null,"url":null,"abstract":"<p><p>It is challenging to stimulate gamma motor neurons, which are important regulators of muscle spindle afferent function, without also recruiting alpha motor neurons. Here, we test the feasibility of stimulating gamma motor neuron axons using optogenetics in two transgenic mouse lines. We used an ex vivo muscle-nerve preparation in adult mice to monitor muscle spindle afferent firing, which should increase in response to gamma motor neuron-induced lengthening of the sensory region of the muscle spindle. A force transducer measured alpha motor neuron-mediated twitch contractions. Blue LED light (470 nm; 1-5 mW) was delivered via a light guide to the sciatic nerve. We confirmed that the more slowly conducting gamma motor neurons were recruited first in mice expressing channelrhodopsin 2 in choline acetyltransferase-positive motor neurons, whereas alpha motor neurons required higher optical intensities, enabling co-activation of alpha and gamma motor neurons depending on light intensity. However, this approach cannot isolate gamma motor neuron activity completely. Cre-dependent channelrhodopsin 2 optoactivation using the putative gamma motor neuron marker neuronal PAS domain protein 1 (Npas1) also increased muscle spindle afferent firing rates and caused only small twitch contractions. This provides functional validation that Npas1 is present primarily in gamma motor neurons and can be used to manipulate gamma motor neurons independently. We propose optogenetic stimulation as a promising tool to manipulate gamma motor neuron activity.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/EP092359","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
It is challenging to stimulate gamma motor neurons, which are important regulators of muscle spindle afferent function, without also recruiting alpha motor neurons. Here, we test the feasibility of stimulating gamma motor neuron axons using optogenetics in two transgenic mouse lines. We used an ex vivo muscle-nerve preparation in adult mice to monitor muscle spindle afferent firing, which should increase in response to gamma motor neuron-induced lengthening of the sensory region of the muscle spindle. A force transducer measured alpha motor neuron-mediated twitch contractions. Blue LED light (470 nm; 1-5 mW) was delivered via a light guide to the sciatic nerve. We confirmed that the more slowly conducting gamma motor neurons were recruited first in mice expressing channelrhodopsin 2 in choline acetyltransferase-positive motor neurons, whereas alpha motor neurons required higher optical intensities, enabling co-activation of alpha and gamma motor neurons depending on light intensity. However, this approach cannot isolate gamma motor neuron activity completely. Cre-dependent channelrhodopsin 2 optoactivation using the putative gamma motor neuron marker neuronal PAS domain protein 1 (Npas1) also increased muscle spindle afferent firing rates and caused only small twitch contractions. This provides functional validation that Npas1 is present primarily in gamma motor neurons and can be used to manipulate gamma motor neurons independently. We propose optogenetic stimulation as a promising tool to manipulate gamma motor neuron activity.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.