Biofilm-associated proteins: from the gut biofilms to neurodegeneration.

IF 12.2 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Gut Microbes Pub Date : 2025-12-01 Epub Date: 2025-02-03 DOI:10.1080/19490976.2025.2461721
Jaione Valle
{"title":"Biofilm-associated proteins: from the gut biofilms to neurodegeneration.","authors":"Jaione Valle","doi":"10.1080/19490976.2025.2461721","DOIUrl":null,"url":null,"abstract":"<p><p>Human microbiota form a biofilm with substantial consequences for health and disease. Numerous studies have indicated that microbial communities produce functional amyloids as part of their biofilm extracellular scaffolds. The overlooked interplay between bacterial amyloids and the host may have detrimental consequences for the host, including neurodegeneration. This work gives an overview of the biofilm-associated amyloids expressed by the gut microbiota and their potential role in neurodegeneration. It discusses the biofilm-associated proteins (BAPs) of the gut microbiota, maps the amyloidogenic domains of these proteins, and analyzes the presence of <i>bap</i> genes within accessory genomes linked with transposable elements. Furthermore, the evidence supporting the existence of amyloids in the gut are presented. Finally, it explores the potential interactions between BAPs and α-synuclein, extending the literature on amyloid cross-kingdom interactions. Based on these findings, this study propose that BAP amyloids act as transmissible catalysts, facilitating the misfolding, accumulation, and spread of α-synuclein aggregates. This review contributes to the understanding of complex interactions among the microbiota, transmissible elements, and host, which is crucial for developing novel therapeutic approaches to combat microbiota-related diseases and improve overall health outcomes.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2461721"},"PeriodicalIF":12.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792866/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2025.2461721","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human microbiota form a biofilm with substantial consequences for health and disease. Numerous studies have indicated that microbial communities produce functional amyloids as part of their biofilm extracellular scaffolds. The overlooked interplay between bacterial amyloids and the host may have detrimental consequences for the host, including neurodegeneration. This work gives an overview of the biofilm-associated amyloids expressed by the gut microbiota and their potential role in neurodegeneration. It discusses the biofilm-associated proteins (BAPs) of the gut microbiota, maps the amyloidogenic domains of these proteins, and analyzes the presence of bap genes within accessory genomes linked with transposable elements. Furthermore, the evidence supporting the existence of amyloids in the gut are presented. Finally, it explores the potential interactions between BAPs and α-synuclein, extending the literature on amyloid cross-kingdom interactions. Based on these findings, this study propose that BAP amyloids act as transmissible catalysts, facilitating the misfolding, accumulation, and spread of α-synuclein aggregates. This review contributes to the understanding of complex interactions among the microbiota, transmissible elements, and host, which is crucial for developing novel therapeutic approaches to combat microbiota-related diseases and improve overall health outcomes.

生物膜相关蛋白:从肠道生物膜到神经变性。
人类微生物群形成的生物膜对健康和疾病有重大影响。大量研究表明,微生物群落产生功能性淀粉样蛋白作为其生物膜细胞外支架的一部分。被忽视的细菌淀粉样蛋白与宿主之间的相互作用可能对宿主产生有害的后果,包括神经变性。这项工作概述了肠道微生物群表达的生物膜相关淀粉样蛋白及其在神经变性中的潜在作用。它讨论了肠道微生物群的生物膜相关蛋白(BAPs),绘制了这些蛋白的淀粉样结构域,并分析了与转座元件相关的辅助基因组中bap基因的存在。此外,证据支持淀粉样蛋白存在于肠道提出。最后,探讨了BAPs与α-突触核蛋白之间的潜在相互作用,扩展了淀粉样蛋白跨界相互作用的文献。基于这些发现,本研究提出BAP淀粉样蛋白作为可传递的催化剂,促进α-突触核蛋白聚集体的错误折叠、积累和扩散。这一综述有助于理解微生物群、传播因子和宿主之间复杂的相互作用,这对于开发新的治疗方法来对抗微生物群相关疾病和改善整体健康结果至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Gut Microbes
Gut Microbes Medicine-Microbiology (medical)
CiteScore
18.20
自引率
3.30%
发文量
196
审稿时长
10 weeks
期刊介绍: The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more. Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信