Ffion Dylan Titmuss, Molly A. Albecker, Katie E. Lotterhos
{"title":"Responses of Littorina spp. Intertidal Snails to Thermal Extremes Indicate Countergradient Variation in Fitness","authors":"Ffion Dylan Titmuss, Molly A. Albecker, Katie E. Lotterhos","doi":"10.1002/ece3.70926","DOIUrl":null,"url":null,"abstract":"<p>Global change models predict not only a steady increase in temperatures but also an increase in the occurrence of hot and cold extremes. Organisms' responses to thermal extremes will depend on species-specific traits and the degree of within-species variation (among populations), with populations from warmer latitudes often predicted to have higher thermal tolerance than populations from colder latitudes. The evolution of population-specific responses, however, can be limited by gene flow that homogenises populations. Here, we investigate this relationship with a study of the survival of <i>Littorina littorea</i>, <i>L. obtusata</i>, and <i>L. saxatilis</i>—marine snails with varying dispersal potential—collected on either side of a known biogeographic break. Snails were laboratory-acclimated for several weeks before undergoing exposures to extreme heat, extreme cold, or ambient conditions, and individual mortality was recorded after each exposure. In line with common predictions, we observed that the degree of population divergence in survival under thermal extremes was negatively related to dispersal potential, and that populations from the colder latitude generally had higher survival of sub-freezing temperatures. Contrary to common predictions, however, we observed greater survival after extreme heat in populations from colder latitudes than in their warmer-latitude counterparts, a pattern known as countergradient variation. This experiment highlights counterintuitive responses to thermal extremes, emphasising that colder-latitude populations could experience population growth under more extreme climates due to higher survival at both hot and sub-freezing thermal extremes.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11779573/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70926","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Global change models predict not only a steady increase in temperatures but also an increase in the occurrence of hot and cold extremes. Organisms' responses to thermal extremes will depend on species-specific traits and the degree of within-species variation (among populations), with populations from warmer latitudes often predicted to have higher thermal tolerance than populations from colder latitudes. The evolution of population-specific responses, however, can be limited by gene flow that homogenises populations. Here, we investigate this relationship with a study of the survival of Littorina littorea, L. obtusata, and L. saxatilis—marine snails with varying dispersal potential—collected on either side of a known biogeographic break. Snails were laboratory-acclimated for several weeks before undergoing exposures to extreme heat, extreme cold, or ambient conditions, and individual mortality was recorded after each exposure. In line with common predictions, we observed that the degree of population divergence in survival under thermal extremes was negatively related to dispersal potential, and that populations from the colder latitude generally had higher survival of sub-freezing temperatures. Contrary to common predictions, however, we observed greater survival after extreme heat in populations from colder latitudes than in their warmer-latitude counterparts, a pattern known as countergradient variation. This experiment highlights counterintuitive responses to thermal extremes, emphasising that colder-latitude populations could experience population growth under more extreme climates due to higher survival at both hot and sub-freezing thermal extremes.
期刊介绍:
Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment.
Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.