Histone Demethylase PHF8 Confers Protection against Oxidative Stress and Cardiomyocyte Apoptosis in Heart Failure by Upregulating FOXA2.

IF 1.2 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Aike Fei, Li Li, Yanfei Liu, Zhe Lv, Jing Jin
{"title":"Histone Demethylase PHF8 Confers Protection against Oxidative Stress and Cardiomyocyte Apoptosis in Heart Failure by Upregulating FOXA2.","authors":"Aike Fei, Li Li, Yanfei Liu, Zhe Lv, Jing Jin","doi":"10.1536/ihj.24-268","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress and cardiomyocyte apoptosis are hallmarks of heart failure (HF) development. Plant homeodomain finger protein 8 (PHF8) is a histone demethylase downregulated in failing human hearts. Nevertheless, the potential role of PHF8 in HF remains unclear. Therefore, this study aimed to explore the biological action and molecular mechanism of PHF8 in HF.A rat model of left anterior descending coronary artery (LAD) ligation-induced HF and a cardiomyocyte model of oxygen-glucose deprivation/reperfusion (OGD/R) were developed after gain- or loss-of-function experiments in rats and cardiomyocytes, respectively. Heart function indexes, such as left ventricular end-diastolic diameter, left ventricular end-systolic diameter, left ventricular ejection fraction, and left ventricular fractional shortening, were detected. Changes in myocardial tissues were examined by pathological staining. Cardiomyocyte apoptosis and oxidative stress markers, such as malondialdehyde, reactive oxygen species, superoxide dismutase, and catalase, were examined. The relationship between PHF8 and forkhead box A2 (FOXA2) was analyzed by luciferase and chromatin immunoprecipitation-quantitative polymerase chain reaction assays.PHF8 was downregulated in LAD-ligated rats and OGD/R-exposed cardiomyocytes. Following PHF8 upregulation, pathological changes in myocardial tissues and heart dysfunction were improved in LAD-ligated rats. Importantly, cardiomyocyte apoptosis and oxidative stress were diminished in vivo and in vitro upon PHF8 upregulation. Mechanistically, PHF8 increased FOXA2 expression in a histone demethylase-dependent manner. FOXA2 silencing abrogated the protective effect of PHF8 upregulation on cardiomyocytes against OGD/R-induced apoptosis and oxidative stress.PHF8 exerts protective functions against cardiomyocyte apoptosis, oxidative stress, and heart dysfunction in HF, in correlation with FOXA2 upregulation. These results suggest that the PHF8/FOXA2 axis may be a promising therapeutic target to prevent HF.</p>","PeriodicalId":13711,"journal":{"name":"International heart journal","volume":"66 1","pages":"114-125"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International heart journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1536/ihj.24-268","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Oxidative stress and cardiomyocyte apoptosis are hallmarks of heart failure (HF) development. Plant homeodomain finger protein 8 (PHF8) is a histone demethylase downregulated in failing human hearts. Nevertheless, the potential role of PHF8 in HF remains unclear. Therefore, this study aimed to explore the biological action and molecular mechanism of PHF8 in HF.A rat model of left anterior descending coronary artery (LAD) ligation-induced HF and a cardiomyocyte model of oxygen-glucose deprivation/reperfusion (OGD/R) were developed after gain- or loss-of-function experiments in rats and cardiomyocytes, respectively. Heart function indexes, such as left ventricular end-diastolic diameter, left ventricular end-systolic diameter, left ventricular ejection fraction, and left ventricular fractional shortening, were detected. Changes in myocardial tissues were examined by pathological staining. Cardiomyocyte apoptosis and oxidative stress markers, such as malondialdehyde, reactive oxygen species, superoxide dismutase, and catalase, were examined. The relationship between PHF8 and forkhead box A2 (FOXA2) was analyzed by luciferase and chromatin immunoprecipitation-quantitative polymerase chain reaction assays.PHF8 was downregulated in LAD-ligated rats and OGD/R-exposed cardiomyocytes. Following PHF8 upregulation, pathological changes in myocardial tissues and heart dysfunction were improved in LAD-ligated rats. Importantly, cardiomyocyte apoptosis and oxidative stress were diminished in vivo and in vitro upon PHF8 upregulation. Mechanistically, PHF8 increased FOXA2 expression in a histone demethylase-dependent manner. FOXA2 silencing abrogated the protective effect of PHF8 upregulation on cardiomyocytes against OGD/R-induced apoptosis and oxidative stress.PHF8 exerts protective functions against cardiomyocyte apoptosis, oxidative stress, and heart dysfunction in HF, in correlation with FOXA2 upregulation. These results suggest that the PHF8/FOXA2 axis may be a promising therapeutic target to prevent HF.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International heart journal
International heart journal 医学-心血管系统
CiteScore
2.50
自引率
6.70%
发文量
148
审稿时长
6-12 weeks
期刊介绍: Authors of research articles should disclose at the time of submission any financial arrangement they may have with a company whose product figures prominently in the submitted manuscript or with a company making a competing product. Such information will be held in confidence while the paper is under review and will not influence the editorial decision, but if the article is accepted for publication, the editors will usually discuss with the authors the manner in which such information is to be communicated to the reader.
文献相关原料
公司名称
产品信息
阿拉丁
Earle’s balanced salt solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信