Tatiana Bebchuk, Andy K Moir, Tito Arosio, Alexander V Kirdyanov, Max C A Torbenson, Paul J Krusic, Toby R Hindson, Heidi Howard, Agata Buchwal, Charles A P Norman, Ulf Büntgen
{"title":"<i>Taxus</i> tree-ring chronologies from southern England reveal western European hydroclimate changes over the past three centuries.","authors":"Tatiana Bebchuk, Andy K Moir, Tito Arosio, Alexander V Kirdyanov, Max C A Torbenson, Paul J Krusic, Toby R Hindson, Heidi Howard, Agata Buchwal, Charles A P Norman, Ulf Büntgen","doi":"10.1007/s00382-025-07601-2","DOIUrl":null,"url":null,"abstract":"<p><p>Heatwaves and summer droughts across Europe are likely to intensify under anthropogenic global warming thereby affecting ecological and societal systems. To place modern trends and extremes in the context of past natural variability, annually resolved and absolutely dated climate reconstructions are needed. Here, we present a network of 153 yew (<i>Taxus baccata</i> L.) tree-ring width (TRW) series from 22 sites in southern England that cover the past 310 years. Significant positive correlations were found between TRW chronologies and both April-July precipitation totals (r > 0.7) and July drought indices (r > 0.59) back to 1901 CE (<i>p</i> < 0.05). We used a suite of residual and standard TRW chronologies to reconstruct interannual to multi-decadal spring-summer precipitation and mid-summer drought variability over western Europe, respectively. Our yew hydroclimate reconstructions capture the majority of reported summer droughts and pluvials back to 1710 CE. Clusters of severe drought spells occurred in the second half of the 18th and mid-twentieth century. Our study suggests that the frequency and intensity of recent hydroclimate extremes over western Europe are likely still within the range of past natural variability.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s00382-025-07601-2.</p>","PeriodicalId":10165,"journal":{"name":"Climate Dynamics","volume":"63 2","pages":"108"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782366/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00382-025-07601-2","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Heatwaves and summer droughts across Europe are likely to intensify under anthropogenic global warming thereby affecting ecological and societal systems. To place modern trends and extremes in the context of past natural variability, annually resolved and absolutely dated climate reconstructions are needed. Here, we present a network of 153 yew (Taxus baccata L.) tree-ring width (TRW) series from 22 sites in southern England that cover the past 310 years. Significant positive correlations were found between TRW chronologies and both April-July precipitation totals (r > 0.7) and July drought indices (r > 0.59) back to 1901 CE (p < 0.05). We used a suite of residual and standard TRW chronologies to reconstruct interannual to multi-decadal spring-summer precipitation and mid-summer drought variability over western Europe, respectively. Our yew hydroclimate reconstructions capture the majority of reported summer droughts and pluvials back to 1710 CE. Clusters of severe drought spells occurred in the second half of the 18th and mid-twentieth century. Our study suggests that the frequency and intensity of recent hydroclimate extremes over western Europe are likely still within the range of past natural variability.
Supplementary information: The online version contains supplementary material available at 10.1007/s00382-025-07601-2.
期刊介绍:
The international journal Climate Dynamics provides for the publication of high-quality research on all aspects of the dynamics of the global climate system.
Coverage includes original paleoclimatic, diagnostic, analytical and numerical modeling research on the structure and behavior of the atmosphere, oceans, cryosphere, biomass and land surface as interacting components of the dynamics of global climate. Contributions are focused on selected aspects of climate dynamics on particular scales of space or time.
The journal also publishes reviews and papers emphasizing an integrated view of the physical and biogeochemical processes governing climate and climate change.