Ischemic stroke reduces bone perfusion and alters osteovascular structure

IF 2.1 Q3 ENDOCRINOLOGY & METABOLISM
Nicholas J. Hanne , Andrew J. Steward , Carla Geeroms , Elizabeth D. Easter , Hannah T. Gensch , Greet Kerckhofs , Tatjana N. Parac-Vogt , Huaxin Sheng , Jacqueline H. Cole
{"title":"Ischemic stroke reduces bone perfusion and alters osteovascular structure","authors":"Nicholas J. Hanne ,&nbsp;Andrew J. Steward ,&nbsp;Carla Geeroms ,&nbsp;Elizabeth D. Easter ,&nbsp;Hannah T. Gensch ,&nbsp;Greet Kerckhofs ,&nbsp;Tatjana N. Parac-Vogt ,&nbsp;Huaxin Sheng ,&nbsp;Jacqueline H. Cole","doi":"10.1016/j.bonr.2025.101824","DOIUrl":null,"url":null,"abstract":"<div><div>Stroke patients lose bone mass and experience fracture at an elevated rate. Although functional intraosseous vasculature is necessary for skeletal maintenance, the effect of stroke on osteovasculature is unknown. In this study we characterized changes to osteovascular perfusion, structure, and composition following mild-to-moderate stroke severity in mice, both with and without exercise therapy. Twelve-week-old male mice (<em>n</em> = 27) received either an ischemic stroke (middle cerebral artery occlusion) or sham procedure, followed by a four-week recovery with either moderate daily treadmill or sedentary activity. Intraosseous perfusion, measured weekly in the proximal tibial metaphysis with laser Doppler flowmetry, was reduced for two weeks in the stroke group relative to the sham group. After four weeks, osteovascular structure was assessed in the distal femoral metaphysis with contrast-enhanced computed tomography. Increased osteovascular volume and branching, decreased number of smaller vessels (6–22 μm), and increased number of larger vessels (&gt;66 μm) were observed in the stroke groups compared to sham groups, which may be a compensatory response to early perfusion deficits. Although moderate exercise mitigated the impact of stroke on osteovascular perfusion and volume, it tended to reduce the amount of osteogenic type H vasculature quantified with immunofluorescence microscopy and, exacerbated by stroke effects, produced fewer vessels in close proximity to bone and thus may have detrimental effects on bone remodeling during early stroke recovery. Since results were similar in both limbs, the effects of ischemic stroke on osteovascular perfusion and structure were primarily systemic, rather than resulting from paresis or disuse, providing new insight for future studies on the pathogenesis and treatment of skeletal fragility in stroke patients.</div></div>","PeriodicalId":9043,"journal":{"name":"Bone Reports","volume":"24 ","pages":"Article 101824"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782850/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352187225000014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Stroke patients lose bone mass and experience fracture at an elevated rate. Although functional intraosseous vasculature is necessary for skeletal maintenance, the effect of stroke on osteovasculature is unknown. In this study we characterized changes to osteovascular perfusion, structure, and composition following mild-to-moderate stroke severity in mice, both with and without exercise therapy. Twelve-week-old male mice (n = 27) received either an ischemic stroke (middle cerebral artery occlusion) or sham procedure, followed by a four-week recovery with either moderate daily treadmill or sedentary activity. Intraosseous perfusion, measured weekly in the proximal tibial metaphysis with laser Doppler flowmetry, was reduced for two weeks in the stroke group relative to the sham group. After four weeks, osteovascular structure was assessed in the distal femoral metaphysis with contrast-enhanced computed tomography. Increased osteovascular volume and branching, decreased number of smaller vessels (6–22 μm), and increased number of larger vessels (>66 μm) were observed in the stroke groups compared to sham groups, which may be a compensatory response to early perfusion deficits. Although moderate exercise mitigated the impact of stroke on osteovascular perfusion and volume, it tended to reduce the amount of osteogenic type H vasculature quantified with immunofluorescence microscopy and, exacerbated by stroke effects, produced fewer vessels in close proximity to bone and thus may have detrimental effects on bone remodeling during early stroke recovery. Since results were similar in both limbs, the effects of ischemic stroke on osteovascular perfusion and structure were primarily systemic, rather than resulting from paresis or disuse, providing new insight for future studies on the pathogenesis and treatment of skeletal fragility in stroke patients.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bone Reports
Bone Reports Medicine-Orthopedics and Sports Medicine
CiteScore
4.30
自引率
4.00%
发文量
444
审稿时长
57 days
期刊介绍: Bone Reports is an interdisciplinary forum for the rapid publication of Original Research Articles and Case Reports across basic, translational and clinical aspects of bone and mineral metabolism. The journal publishes papers that are scientifically sound, with the peer review process focused principally on verifying sound methodologies, and correct data analysis and interpretation. We welcome studies either replicating or failing to replicate a previous study, and null findings. We fulfil a critical and current need to enhance research by publishing reproducibility studies and null findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信