Nicholas J. Hanne , Andrew J. Steward , Carla Geeroms , Elizabeth D. Easter , Hannah T. Gensch , Greet Kerckhofs , Tatjana N. Parac-Vogt , Huaxin Sheng , Jacqueline H. Cole
{"title":"Ischemic stroke reduces bone perfusion and alters osteovascular structure","authors":"Nicholas J. Hanne , Andrew J. Steward , Carla Geeroms , Elizabeth D. Easter , Hannah T. Gensch , Greet Kerckhofs , Tatjana N. Parac-Vogt , Huaxin Sheng , Jacqueline H. Cole","doi":"10.1016/j.bonr.2025.101824","DOIUrl":null,"url":null,"abstract":"<div><div>Stroke patients lose bone mass and experience fracture at an elevated rate. Although functional intraosseous vasculature is necessary for skeletal maintenance, the effect of stroke on osteovasculature is unknown. In this study we characterized changes to osteovascular perfusion, structure, and composition following mild-to-moderate stroke severity in mice, both with and without exercise therapy. Twelve-week-old male mice (<em>n</em> = 27) received either an ischemic stroke (middle cerebral artery occlusion) or sham procedure, followed by a four-week recovery with either moderate daily treadmill or sedentary activity. Intraosseous perfusion, measured weekly in the proximal tibial metaphysis with laser Doppler flowmetry, was reduced for two weeks in the stroke group relative to the sham group. After four weeks, osteovascular structure was assessed in the distal femoral metaphysis with contrast-enhanced computed tomography. Increased osteovascular volume and branching, decreased number of smaller vessels (6–22 μm), and increased number of larger vessels (>66 μm) were observed in the stroke groups compared to sham groups, which may be a compensatory response to early perfusion deficits. Although moderate exercise mitigated the impact of stroke on osteovascular perfusion and volume, it tended to reduce the amount of osteogenic type H vasculature quantified with immunofluorescence microscopy and, exacerbated by stroke effects, produced fewer vessels in close proximity to bone and thus may have detrimental effects on bone remodeling during early stroke recovery. Since results were similar in both limbs, the effects of ischemic stroke on osteovascular perfusion and structure were primarily systemic, rather than resulting from paresis or disuse, providing new insight for future studies on the pathogenesis and treatment of skeletal fragility in stroke patients.</div></div>","PeriodicalId":9043,"journal":{"name":"Bone Reports","volume":"24 ","pages":"Article 101824"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782850/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352187225000014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Stroke patients lose bone mass and experience fracture at an elevated rate. Although functional intraosseous vasculature is necessary for skeletal maintenance, the effect of stroke on osteovasculature is unknown. In this study we characterized changes to osteovascular perfusion, structure, and composition following mild-to-moderate stroke severity in mice, both with and without exercise therapy. Twelve-week-old male mice (n = 27) received either an ischemic stroke (middle cerebral artery occlusion) or sham procedure, followed by a four-week recovery with either moderate daily treadmill or sedentary activity. Intraosseous perfusion, measured weekly in the proximal tibial metaphysis with laser Doppler flowmetry, was reduced for two weeks in the stroke group relative to the sham group. After four weeks, osteovascular structure was assessed in the distal femoral metaphysis with contrast-enhanced computed tomography. Increased osteovascular volume and branching, decreased number of smaller vessels (6–22 μm), and increased number of larger vessels (>66 μm) were observed in the stroke groups compared to sham groups, which may be a compensatory response to early perfusion deficits. Although moderate exercise mitigated the impact of stroke on osteovascular perfusion and volume, it tended to reduce the amount of osteogenic type H vasculature quantified with immunofluorescence microscopy and, exacerbated by stroke effects, produced fewer vessels in close proximity to bone and thus may have detrimental effects on bone remodeling during early stroke recovery. Since results were similar in both limbs, the effects of ischemic stroke on osteovascular perfusion and structure were primarily systemic, rather than resulting from paresis or disuse, providing new insight for future studies on the pathogenesis and treatment of skeletal fragility in stroke patients.
Bone ReportsMedicine-Orthopedics and Sports Medicine
CiteScore
4.30
自引率
4.00%
发文量
444
审稿时长
57 days
期刊介绍:
Bone Reports is an interdisciplinary forum for the rapid publication of Original Research Articles and Case Reports across basic, translational and clinical aspects of bone and mineral metabolism. The journal publishes papers that are scientifically sound, with the peer review process focused principally on verifying sound methodologies, and correct data analysis and interpretation. We welcome studies either replicating or failing to replicate a previous study, and null findings. We fulfil a critical and current need to enhance research by publishing reproducibility studies and null findings.