Development and validation of a nomogram model for predicting immune-mediated hepatitis in cancer patients treated with immune checkpoint inhibitors.

IF 5.7 4区 生物学 Q1 BIOLOGY
Qianjie Xu, Xiaosheng Li, Yuliang Yuan, Zuhai Hu, Wei Zhang, Ying Wang, Ai Shen, Haike Lei
{"title":"Development and validation of a nomogram model for predicting immune-mediated hepatitis in cancer patients treated with immune checkpoint inhibitors.","authors":"Qianjie Xu, Xiaosheng Li, Yuliang Yuan, Zuhai Hu, Wei Zhang, Ying Wang, Ai Shen, Haike Lei","doi":"10.5582/bst.2024.01351","DOIUrl":null,"url":null,"abstract":"<p><p>Immune checkpoint inhibitors (ICIs) have been widely used in various types of cancer, but they have also led to a significant number of adverse events, including ICI-induced immune-mediated hepatitis (IMH). This study aimed to explore the risk factors for IMH in patients treated with ICIs and to develop and validate a new nomogram model to predict the risk of IMH. Detailed information was collected between January 1, 2020, and December 31, 2023. Univariate logistic regression analysis was used to assess the impact of each clinical variable on the occurrence of IMH, followed by stepwise multivariate logistic regression analysis to determine independent risk factors for IMH. A nomogram model was constructed based on the results of the multivariate analysis. The performance of the nomogram model was evaluated via the area under the receiver operating characteristic curve (AUC), calibration curves, decision curve analysis (DCA), and clinical impact curve (CIC) analysis. A total of 216 (8.82%) patients developed IMH. According to stepwise multivariate logistic analysis, hepatic metastasis, the TNM stage, the WBC count, LYM, ALT, TBIL, ALB, GLB, and ADA were identified as risk factors for IMH. The AUC for the nomogram model was 0.817 in the training set and 0.737 in the validation set. The calibration curves, DCA results, and CIC results indicated that the nomogram model had good predictive accuracy and clinical utility. The nomogram model is intuitive and straightforward, making it highly suitable for rapid assessment of the risk of IMH in patients receiving ICI therapy in clinical practice. Implementing this model enables early adoption of preventive and therapeutic strategies, ultimately reducing the likelihood of immune-related adverse events (IRAEs), and especially IMH.</p>","PeriodicalId":8957,"journal":{"name":"Bioscience trends","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience trends","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5582/bst.2024.01351","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Immune checkpoint inhibitors (ICIs) have been widely used in various types of cancer, but they have also led to a significant number of adverse events, including ICI-induced immune-mediated hepatitis (IMH). This study aimed to explore the risk factors for IMH in patients treated with ICIs and to develop and validate a new nomogram model to predict the risk of IMH. Detailed information was collected between January 1, 2020, and December 31, 2023. Univariate logistic regression analysis was used to assess the impact of each clinical variable on the occurrence of IMH, followed by stepwise multivariate logistic regression analysis to determine independent risk factors for IMH. A nomogram model was constructed based on the results of the multivariate analysis. The performance of the nomogram model was evaluated via the area under the receiver operating characteristic curve (AUC), calibration curves, decision curve analysis (DCA), and clinical impact curve (CIC) analysis. A total of 216 (8.82%) patients developed IMH. According to stepwise multivariate logistic analysis, hepatic metastasis, the TNM stage, the WBC count, LYM, ALT, TBIL, ALB, GLB, and ADA were identified as risk factors for IMH. The AUC for the nomogram model was 0.817 in the training set and 0.737 in the validation set. The calibration curves, DCA results, and CIC results indicated that the nomogram model had good predictive accuracy and clinical utility. The nomogram model is intuitive and straightforward, making it highly suitable for rapid assessment of the risk of IMH in patients receiving ICI therapy in clinical practice. Implementing this model enables early adoption of preventive and therapeutic strategies, ultimately reducing the likelihood of immune-related adverse events (IRAEs), and especially IMH.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.60
自引率
1.80%
发文量
47
审稿时长
>12 weeks
期刊介绍: BioScience Trends (Print ISSN 1881-7815, Online ISSN 1881-7823) is an international peer-reviewed journal. BioScience Trends devotes to publishing the latest and most exciting advances in scientific research. Articles cover fields of life science such as biochemistry, molecular biology, clinical research, public health, medical care system, and social science in order to encourage cooperation and exchange among scientists and clinical researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信