Detection of QTLs regulating the second internode length in rice dwarf mutant d1.

IF 2 4区 农林科学 Q2 AGRONOMY
Breeding Science Pub Date : 2024-12-01 Epub Date: 2024-12-03 DOI:10.1270/jsbbs.24036
Quynh T Ha, Sandar Moe, Vincent Pamugas Reyes, Kazuyuki Doi, Kotaro Miura, Mio Mizushima, Akiteru Maeno, Katsutoshi Tsuda, Keisuke Nagai, Motoyuki Ashikari
{"title":"Detection of QTLs regulating the second internode length in rice dwarf mutant <i>d1</i>.","authors":"Quynh T Ha, Sandar Moe, Vincent Pamugas Reyes, Kazuyuki Doi, Kotaro Miura, Mio Mizushima, Akiteru Maeno, Katsutoshi Tsuda, Keisuke Nagai, Motoyuki Ashikari","doi":"10.1270/jsbbs.24036","DOIUrl":null,"url":null,"abstract":"<p><p>Stem length is a crucial agronomic trait in rice breeding. The short stature of rice dwarf mutants is caused by shortening of internodes, resulting in five distinct internode elongation patterns: dn, dm, d6, nl and sh. Several genetic studies have been conducted; however, the genetic mechanisms underlying these internode elongation patterns remain unclear. In this study, we examined two Daikoku dwarf (<i>d1</i>) mutants, T65(<i>d1-1</i>) and Kin(<i>d1-7</i>), which display contrasting internode elongation phenotypes. Anatomical observation revealed that T65(<i>d1-1</i>) exhibits a dm-type internode elongation pattern due to the lack of the second internode counted from the top, while Kin(<i>d1-7</i>) shows a dn-type pattern with a relatively elongated second internode. To identify the genetic factors influencing these phenotypes, we conducted a quantitative trait locus (QTL) analysis using two F<sub>2</sub> populations derived from reciprocal crosses between them. The QTL analysis showed that the second internode length is regulated by three QTLs on chromosomes 4, 5, and 6. Epistatic effects were observed through the analysis of F<sub>3</sub> progenies, indicating that the combination of Kin(<i>d1-7</i>) alleles at these QTLs is associated with an increased second internode length. Furthermore, specific combinations of alleles result in varying degrees of elongation in the second internode, significantly impacting the internode elongation pattern. These findings contribute to a deeper understanding of the genetic factors influencing the internode elongation patterns in rice.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"74 5","pages":"443-453"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780330/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breeding Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1270/jsbbs.24036","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Stem length is a crucial agronomic trait in rice breeding. The short stature of rice dwarf mutants is caused by shortening of internodes, resulting in five distinct internode elongation patterns: dn, dm, d6, nl and sh. Several genetic studies have been conducted; however, the genetic mechanisms underlying these internode elongation patterns remain unclear. In this study, we examined two Daikoku dwarf (d1) mutants, T65(d1-1) and Kin(d1-7), which display contrasting internode elongation phenotypes. Anatomical observation revealed that T65(d1-1) exhibits a dm-type internode elongation pattern due to the lack of the second internode counted from the top, while Kin(d1-7) shows a dn-type pattern with a relatively elongated second internode. To identify the genetic factors influencing these phenotypes, we conducted a quantitative trait locus (QTL) analysis using two F2 populations derived from reciprocal crosses between them. The QTL analysis showed that the second internode length is regulated by three QTLs on chromosomes 4, 5, and 6. Epistatic effects were observed through the analysis of F3 progenies, indicating that the combination of Kin(d1-7) alleles at these QTLs is associated with an increased second internode length. Furthermore, specific combinations of alleles result in varying degrees of elongation in the second internode, significantly impacting the internode elongation pattern. These findings contribute to a deeper understanding of the genetic factors influencing the internode elongation patterns in rice.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Breeding Science
Breeding Science 农林科学-农艺学
CiteScore
4.90
自引率
4.20%
发文量
37
审稿时长
1.5 months
期刊介绍: Breeding Science is published by the Japanese Society of Breeding. Breeding Science publishes research papers, notes and reviews related to breeding. Research Papers are standard original articles. Notes report new cultivars, breeding lines, germplasms, genetic stocks, mapping populations, database, software, and techniques significant and useful for breeding. Reviews summarize recent and historical events related breeding. Manuscripts should be submitted by corresponding author. Corresponding author must have obtained permission from all authors prior to submission. Correspondence, proofs, and charges of excess page and color figures should be handled by the corresponding author.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信