Comparative study of elastic properties measurement techniques during plastic deformation of aluminum, magnesium, and titanium alloys: application to springback simulation

IF 1.9 3区 工程技术 Q3 MECHANICS
J. A. Nietsch, A. C. Ott, G. Watzl, A. Cerny, F. J. Grabner, C. Grünsteidl, J. A. Österreicher
{"title":"Comparative study of elastic properties measurement techniques during plastic deformation of aluminum, magnesium, and titanium alloys: application to springback simulation","authors":"J. A. Nietsch,&nbsp;A. C. Ott,&nbsp;G. Watzl,&nbsp;A. Cerny,&nbsp;F. J. Grabner,&nbsp;C. Grünsteidl,&nbsp;J. A. Österreicher","doi":"10.1007/s11012-024-01918-8","DOIUrl":null,"url":null,"abstract":"<div><p>Reliable determination of the elastic moduli of metals can be quite demanding, especially as the apparent elastic modulus of metals is known to decrease with deformation. Traditionally, this dependence on plastic strain has been investigated through various tensile tests, but discrepancies persist across the different approaches. Here we compare several tensile test-based evaluation protocols based on loading-unloading experiments to measure the change in elastic moduli of the light metal alloys AZ31B, EN AW-6082, and Ti–6Al–4V during tensile deformation. Additionally, the initial Young’s modulus determination via tensile testing, three-point-bending experiments, contact-free laser ultrasonic zero-group-velocity plate resonance, and piezoelectric contact ultrasonic time-of-flight measurements were compared. The results reveal non-negligible differences in the strain-dependency of elastic moduli between the determination techniques. Additionally, the laser ultrasound measurements demonstrate an improved accuracy and repeatability for the determination of the initial elastic moduli of light metal sheets. The benefit of considering the reduction of the elastic moduli in finite element springback simulation of three-point-bending tests is demonstrated and the use of the chord modulus is found to be generally most appropriate.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"60 1","pages":"55 - 72"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785604/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-024-01918-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Reliable determination of the elastic moduli of metals can be quite demanding, especially as the apparent elastic modulus of metals is known to decrease with deformation. Traditionally, this dependence on plastic strain has been investigated through various tensile tests, but discrepancies persist across the different approaches. Here we compare several tensile test-based evaluation protocols based on loading-unloading experiments to measure the change in elastic moduli of the light metal alloys AZ31B, EN AW-6082, and Ti–6Al–4V during tensile deformation. Additionally, the initial Young’s modulus determination via tensile testing, three-point-bending experiments, contact-free laser ultrasonic zero-group-velocity plate resonance, and piezoelectric contact ultrasonic time-of-flight measurements were compared. The results reveal non-negligible differences in the strain-dependency of elastic moduli between the determination techniques. Additionally, the laser ultrasound measurements demonstrate an improved accuracy and repeatability for the determination of the initial elastic moduli of light metal sheets. The benefit of considering the reduction of the elastic moduli in finite element springback simulation of three-point-bending tests is demonstrated and the use of the chord modulus is found to be generally most appropriate.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Meccanica
Meccanica 物理-力学
CiteScore
4.70
自引率
3.70%
发文量
151
审稿时长
7 months
期刊介绍: Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics. Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences. Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信