Machine learning-based screening and molecular simulations for discovering novel PARP-1 inhibitors targeting DNA repair mechanisms for breast cancer therapy.
Muhammad Shahab, Muhammad Waqas, Aamir Fahira, Bharat Prasad Sharma, Haoke Zhang, Guojun Zheng, Zunnan Huang
{"title":"Machine learning-based screening and molecular simulations for discovering novel PARP-1 inhibitors targeting DNA repair mechanisms for breast cancer therapy.","authors":"Muhammad Shahab, Muhammad Waqas, Aamir Fahira, Bharat Prasad Sharma, Haoke Zhang, Guojun Zheng, Zunnan Huang","doi":"10.1007/s11030-025-11119-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer remains one of the leading causes of death worldwide, with the rising incidence of breast cancer being a significant public health concern. Poly (ADP-ribose) polymerase-1 (PARP-1) has emerged as a promising therapeutic target for breast cancer treatment due to its crucial role in DNA repair. This study aimed to discover novel, targeted, and non-toxic PARP-1 inhibitors using an integrated approach that combines machine learning-based screening, molecular docking simulations, and quantum mechanical calculations. We trained a widely used machine learning models, Random Forest, using bioactivity data from known PARP-1 inhibitors. After evaluating the performance, it was used to screen an FDA-approved drug library, successfully identifying Atazanavir, Brexpiprazole, Raltegravir, and Nisoldipine as potential PARP-1 inhibitors. These compounds were further validated through molecular docking and all-atom molecular dynamics simulations, highlighting their potential for breast cancer therapy. The binding free energies indicated that Atazanavir at - 41.86 kJ/mol and Brexpiprazole at - 45.44 kJ/mol exhibited superior binding affinity compared to the control drug at - 30.42 kJ/mol, highlighting their promise as candidates for breast cancer therapy. Subsequent optimized geometries and electron density mappings of the two molecular structures revealed a Gibbs free energy of - 2334.610 Ha for the first molecule and - 1682.278316 Ha for the second, confirming enhanced stability compared to the standard drug. This study not only highlights the efficacy of machine learning in drug discovery but also underscores the importance of quantum mechanics in validating molecular stability, setting a robust foundation for future pharmacological explorations. Additionally, this approach could revolutionize the drug repurposing process by significantly reducing the time and cost associated with traditional drug development methods. Our results establish a promising basis for subsequent research aimed at optimizing these PARP-1 inhibitors for clinical use, potentially offering more effective treatment options for breast cancer patients.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11119-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer remains one of the leading causes of death worldwide, with the rising incidence of breast cancer being a significant public health concern. Poly (ADP-ribose) polymerase-1 (PARP-1) has emerged as a promising therapeutic target for breast cancer treatment due to its crucial role in DNA repair. This study aimed to discover novel, targeted, and non-toxic PARP-1 inhibitors using an integrated approach that combines machine learning-based screening, molecular docking simulations, and quantum mechanical calculations. We trained a widely used machine learning models, Random Forest, using bioactivity data from known PARP-1 inhibitors. After evaluating the performance, it was used to screen an FDA-approved drug library, successfully identifying Atazanavir, Brexpiprazole, Raltegravir, and Nisoldipine as potential PARP-1 inhibitors. These compounds were further validated through molecular docking and all-atom molecular dynamics simulations, highlighting their potential for breast cancer therapy. The binding free energies indicated that Atazanavir at - 41.86 kJ/mol and Brexpiprazole at - 45.44 kJ/mol exhibited superior binding affinity compared to the control drug at - 30.42 kJ/mol, highlighting their promise as candidates for breast cancer therapy. Subsequent optimized geometries and electron density mappings of the two molecular structures revealed a Gibbs free energy of - 2334.610 Ha for the first molecule and - 1682.278316 Ha for the second, confirming enhanced stability compared to the standard drug. This study not only highlights the efficacy of machine learning in drug discovery but also underscores the importance of quantum mechanics in validating molecular stability, setting a robust foundation for future pharmacological explorations. Additionally, this approach could revolutionize the drug repurposing process by significantly reducing the time and cost associated with traditional drug development methods. Our results establish a promising basis for subsequent research aimed at optimizing these PARP-1 inhibitors for clinical use, potentially offering more effective treatment options for breast cancer patients.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;