From bench to bedside: murine models of inherited and sporadic brain arteriovenous malformations

IF 9.2 1区 医学 Q1 PERIPHERAL VASCULAR DISEASE
Ashely R. Ricciardelli, Gael Genet, Nafiisha Genet, Samuel T. McClugage III, Peter T. Kan, Karen K. Hirschi, Jason E. Fish, Joshua D. Wythe
{"title":"From bench to bedside: murine models of inherited and sporadic brain arteriovenous malformations","authors":"Ashely R. Ricciardelli,&nbsp;Gael Genet,&nbsp;Nafiisha Genet,&nbsp;Samuel T. McClugage III,&nbsp;Peter T. Kan,&nbsp;Karen K. Hirschi,&nbsp;Jason E. Fish,&nbsp;Joshua D. Wythe","doi":"10.1007/s10456-024-09953-5","DOIUrl":null,"url":null,"abstract":"<div><p>Brain arteriovenous malformations are abnormal vascular structures in which an artery shunts high pressure blood directly to a vein without an intervening capillary bed. These lesions become highly remodeled over time and are prone to rupture. Historically, brain arteriovenous malformations have been challenging to treat, using primarily surgical approaches. Over the past few decades, the genetic causes of these malformations have been uncovered. These can be divided into (1) familial forms, such as loss of function mutations in TGF-β (BMP9/10) components in hereditary hemorrhagic telangiectasia, or (2) sporadic forms, resulting from somatic gain of function mutations in genes involved in the RAS-MAPK signaling pathway. Leveraging these genetic discoveries, preclinical mouse models have been developed to uncover the mechanisms underlying abnormal vessel formation, and thus revealing potential therapeutic targets. Impressively, initial preclinical studies suggest that pharmacological treatments disrupting these aberrant pathways may ameliorate the abnormal pathologic vessel remodeling and inflammatory and hemorrhagic nature of these high-flow vascular anomalies. Intriguingly, these studies also suggest uncontrolled angiogenic signaling may be a major driver in bAVM pathogenesis. This comprehensive review describes the genetics underlying both inherited and sporadic bAVM and details the state of the field regarding murine models of bAVM, highlighting emerging therapeutic targets that may transform our approach to treating these devastating lesions.</p></div>","PeriodicalId":7886,"journal":{"name":"Angiogenesis","volume":"28 2","pages":""},"PeriodicalIF":9.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10456-024-09953-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angiogenesis","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s10456-024-09953-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0

Abstract

Brain arteriovenous malformations are abnormal vascular structures in which an artery shunts high pressure blood directly to a vein without an intervening capillary bed. These lesions become highly remodeled over time and are prone to rupture. Historically, brain arteriovenous malformations have been challenging to treat, using primarily surgical approaches. Over the past few decades, the genetic causes of these malformations have been uncovered. These can be divided into (1) familial forms, such as loss of function mutations in TGF-β (BMP9/10) components in hereditary hemorrhagic telangiectasia, or (2) sporadic forms, resulting from somatic gain of function mutations in genes involved in the RAS-MAPK signaling pathway. Leveraging these genetic discoveries, preclinical mouse models have been developed to uncover the mechanisms underlying abnormal vessel formation, and thus revealing potential therapeutic targets. Impressively, initial preclinical studies suggest that pharmacological treatments disrupting these aberrant pathways may ameliorate the abnormal pathologic vessel remodeling and inflammatory and hemorrhagic nature of these high-flow vascular anomalies. Intriguingly, these studies also suggest uncontrolled angiogenic signaling may be a major driver in bAVM pathogenesis. This comprehensive review describes the genetics underlying both inherited and sporadic bAVM and details the state of the field regarding murine models of bAVM, highlighting emerging therapeutic targets that may transform our approach to treating these devastating lesions.

从实验台到床边:遗传性和散发性脑动静脉畸形的小鼠模型。
脑动静脉畸形是一种异常的血管结构,其中动脉将高压血液直接分流到静脉,而没有介入毛细血管床。随着时间的推移,这些病变变得高度重塑,并且容易破裂。从历史上看,脑动静脉畸形的治疗一直具有挑战性,主要采用手术方法。在过去的几十年里,这些畸形的遗传原因已经被发现。这些可分为(1)家族性形式,如遗传性出血型毛细血管扩张中TGF-β (BMP9/10)成分的功能突变缺失;或(2)散发性形式,由RAS-MAPK信号通路相关基因的体细胞功能突变获得引起。利用这些基因发现,临床前小鼠模型已经被开发出来,以揭示异常血管形成的机制,从而揭示潜在的治疗靶点。令人印象深刻的是,最初的临床前研究表明,破坏这些异常通路的药物治疗可能会改善这些高流量血管异常的异常病理性血管重塑和炎症和出血性质。有趣的是,这些研究还表明,不受控制的血管生成信号可能是bAVM发病机制的主要驱动因素。这篇全面的综述描述了遗传和散发性脑脊髓瘤的遗传学基础,并详细介绍了脑脊髓瘤小鼠模型的研究现状,强调了可能改变我们治疗这些破坏性病变方法的新兴治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angiogenesis
Angiogenesis PERIPHERAL VASCULAR DISEASE-
CiteScore
21.90
自引率
8.20%
发文量
37
审稿时长
6-12 weeks
期刊介绍: Angiogenesis, a renowned international journal, seeks to publish high-quality original articles and reviews on the cellular and molecular mechanisms governing angiogenesis in both normal and pathological conditions. By serving as a primary platform for swift communication within the field of angiogenesis research, this multidisciplinary journal showcases pioneering experimental studies utilizing molecular techniques, in vitro methods, animal models, and clinical investigations into angiogenic diseases. Furthermore, Angiogenesis sheds light on cutting-edge therapeutic strategies for promoting or inhibiting angiogenesis, while also highlighting fresh markers and techniques for disease diagnosis and prognosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信