Role of gallic acid against hepatic functional and histological deteriorations in tartrazine-intoxicated rats

IF 3.9 3区 医学 Q2 FOOD SCIENCE & TECHNOLOGY
Rahma F. Ezz El-Arab , Hanan S.A. Waly , M. Bassam Al-Salahy , Moustafa A. Saleh , Shaimaa M.M. Saleh
{"title":"Role of gallic acid against hepatic functional and histological deteriorations in tartrazine-intoxicated rats","authors":"Rahma F. Ezz El-Arab ,&nbsp;Hanan S.A. Waly ,&nbsp;M. Bassam Al-Salahy ,&nbsp;Moustafa A. Saleh ,&nbsp;Shaimaa M.M. Saleh","doi":"10.1016/j.fct.2025.115303","DOIUrl":null,"url":null,"abstract":"<div><div>Tartrazine (Tz) is one of the most commonly used artificial food colorants in the food industry, found in a wide array of products. This study investigates the protective role of gallic acid (GA), a powerful antioxidant, against the adverse effects of Tz on the liver. Over a 30-day period, 40 rats were divided into two groups: Group 1 (control group, 10 rats) received a daily administration of a vehicle, while Group 2 (30 rats) received Tz (30 mg/kg body weight). Group 2 was further subdivided into three subgroups of 10 rats each: Subgroup 1 served as a positive control for Tz; Subgroup 2 received GA (200 mg/kg body weight); and Subgroup 3 was left untreated for an additional 30 days as a recovery group (TR). Our study revealed that GA normalized liver functions markers (ALT, AST, and bilirubin), regulated lipids (cholesterol, HDL, LDL, and TG), and ameliorated the redox potentials activity of liver tissue (Catalase, GSH, SOD, LPO, Total peroxide, and Carbonyl protein), revealing its potential in mitigating the negative impact of Tz administration. Moreover, histopathological examinations, including the TUNEL assay, and histological and histochemical studies, demonstrated that GA effectively prevented the histological damage caused by Tz administration.</div></div>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":"197 ","pages":"Article 115303"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Chemical Toxicology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278691525000705","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tartrazine (Tz) is one of the most commonly used artificial food colorants in the food industry, found in a wide array of products. This study investigates the protective role of gallic acid (GA), a powerful antioxidant, against the adverse effects of Tz on the liver. Over a 30-day period, 40 rats were divided into two groups: Group 1 (control group, 10 rats) received a daily administration of a vehicle, while Group 2 (30 rats) received Tz (30 mg/kg body weight). Group 2 was further subdivided into three subgroups of 10 rats each: Subgroup 1 served as a positive control for Tz; Subgroup 2 received GA (200 mg/kg body weight); and Subgroup 3 was left untreated for an additional 30 days as a recovery group (TR). Our study revealed that GA normalized liver functions markers (ALT, AST, and bilirubin), regulated lipids (cholesterol, HDL, LDL, and TG), and ameliorated the redox potentials activity of liver tissue (Catalase, GSH, SOD, LPO, Total peroxide, and Carbonyl protein), revealing its potential in mitigating the negative impact of Tz administration. Moreover, histopathological examinations, including the TUNEL assay, and histological and histochemical studies, demonstrated that GA effectively prevented the histological damage caused by Tz administration.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food and Chemical Toxicology
Food and Chemical Toxicology 工程技术-毒理学
CiteScore
10.90
自引率
4.70%
发文量
651
审稿时长
31 days
期刊介绍: Food and Chemical Toxicology (FCT), an internationally renowned journal, that publishes original research articles and reviews on toxic effects, in animals and humans, of natural or synthetic chemicals occurring in the human environment with particular emphasis on food, drugs, and chemicals, including agricultural and industrial safety, and consumer product safety. Areas such as safety evaluation of novel foods and ingredients, biotechnologically-derived products, and nanomaterials are included in the scope of the journal. FCT also encourages submission of papers on inter-relationships between nutrition and toxicology and on in vitro techniques, particularly those fostering the 3 Rs. The principal aim of the journal is to publish high impact, scholarly work and to serve as a multidisciplinary forum for research in toxicology. Papers submitted will be judged on the basis of scientific originality and contribution to the field, quality and subject matter. Studies should address at least one of the following: -Adverse physiological/biochemical, or pathological changes induced by specific defined substances -New techniques for assessing potential toxicity, including molecular biology -Mechanisms underlying toxic phenomena -Toxicological examinations of specific chemicals or consumer products, both those showing adverse effects and those demonstrating safety, that meet current standards of scientific acceptability. Authors must clearly and briefly identify what novel toxic effect (s) or toxic mechanism (s) of the chemical are being reported and what their significance is in the abstract. Furthermore, sufficient doses should be included in order to provide information on NOAEL/LOAEL values.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信