Janice Adaeze Nwankwo, Wenxue Liu, Xiusheng Guo, Yunzhuoya Lin, Mudassar Hussain, Imad Khan, Magezi Joshua, Ajibola Nihmot Ibrahim, Okafor Jennifer Ngozi, Ahmad Ali, Xiaoqiang Zou
{"title":"Microemulsion gel systems: Formulation, stability studies, biopolymer interactions, and functionality in food product development","authors":"Janice Adaeze Nwankwo, Wenxue Liu, Xiusheng Guo, Yunzhuoya Lin, Mudassar Hussain, Imad Khan, Magezi Joshua, Ajibola Nihmot Ibrahim, Okafor Jennifer Ngozi, Ahmad Ali, Xiaoqiang Zou","doi":"10.1111/1541-4337.70110","DOIUrl":null,"url":null,"abstract":"<p>Microemulsion gels (MGs) are nanostructured systems created by the addition of thickening agents/biopolymers to a microemulsion's aqueous or oily phases, offering benefits like improved solubilization, enhanced stability, high encapsulation efficiency, and sustained release with versatile applications in food, pharmaceuticals, and cosmetology. MGs are intricate systems with thermodynamic robustness and controllable rheological characteristics crucial for obtaining high structural integrity and achieving innovative results regarding food product development in diverse areas of food, including colloidal carriers, food packaging, active compound delivery, antimicrobial vectors, and production of biopolymer nanoparticles. Therefore, a comprehensive analysis, hence understanding about MG systems, is needed to identify trends and gaps, helping researchers to identify promising areas for innovation and providing direction for future research. This review offers a comprehensive analysis of MG systems, their characteristics, formulation, formation mechanisms, design approaches, digestion dynamics, and rheological properties. MGs excel in solubilizing hydrophilic and lipophilic bioactives due to their enhanced viscosity and interconnected droplet network within the gel matrix. Despite their advantages, challenges, such as formulation complexity, require further understanding. This article also explores innovative biopolymers, characterization, and extensive applications, while addressing case studies, and emerging trends leveraging the potential of MG systems for enhancing food stability, functionality, and nutritional value.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 2","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.70110","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microemulsion gels (MGs) are nanostructured systems created by the addition of thickening agents/biopolymers to a microemulsion's aqueous or oily phases, offering benefits like improved solubilization, enhanced stability, high encapsulation efficiency, and sustained release with versatile applications in food, pharmaceuticals, and cosmetology. MGs are intricate systems with thermodynamic robustness and controllable rheological characteristics crucial for obtaining high structural integrity and achieving innovative results regarding food product development in diverse areas of food, including colloidal carriers, food packaging, active compound delivery, antimicrobial vectors, and production of biopolymer nanoparticles. Therefore, a comprehensive analysis, hence understanding about MG systems, is needed to identify trends and gaps, helping researchers to identify promising areas for innovation and providing direction for future research. This review offers a comprehensive analysis of MG systems, their characteristics, formulation, formation mechanisms, design approaches, digestion dynamics, and rheological properties. MGs excel in solubilizing hydrophilic and lipophilic bioactives due to their enhanced viscosity and interconnected droplet network within the gel matrix. Despite their advantages, challenges, such as formulation complexity, require further understanding. This article also explores innovative biopolymers, characterization, and extensive applications, while addressing case studies, and emerging trends leveraging the potential of MG systems for enhancing food stability, functionality, and nutritional value.
期刊介绍:
Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology.
CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results.
Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity.
The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.