Mariana S S Oliveira, Amanda C Caritá, Karin A Riske
{"title":"Interaction of biomimetic lipid membranes with detergents with different physicochemical characteristics.","authors":"Mariana S S Oliveira, Amanda C Caritá, Karin A Riske","doi":"10.1016/j.chemphyslip.2025.105473","DOIUrl":null,"url":null,"abstract":"<p><p>Membrane solubilization by detergents is routinely performed to separate membrane components, and to extract and purify membrane proteins. This process depends both on the characteristics of the detergent and properties of the membrane. Here we investigate the interaction of eight detergents with very distinct physicochemical features with model membranes in different biologically relevant phases. The detergents chosen were the non-ionic Triton X-100, Triton X-165, C10E5, octyl glucopyranoside (OG) and dodecyl maltoside (DDM) and the ionic sodium dodecyl sulfate (SDS), cetyl trimethyl ammonium bromide (CTAB) and Chaps. Three lipid compositions were explored: pure palmitoyl oleoyl phosphatidylcholine (POPC), in the liquid-disordered (Ld) phase, sphingomyelin (SM)/cholesterol 7:3 (chol) in the liquid-ordered (Lo) phase and the biomimetic POPC/SM/chol 2:1:2, which might exhibit Lo/Ld phase separation. Turbidity measurements of small liposomes were performed along the titration with the detergents to obtain the overall solubilization profiles and optical microscopy of giant unilamellar vesicles (GUVs) was used to reveal the mechanism of interaction of the detergents. The presence of cholesterol renders the membranes partly/fully insoluble in all detergents, and the charged detergents are the least effective to solubilize POPC. The non-ionic detergents, with exception of DDM, with the bulkiest headgroup, caused a substantial increase in surface area of POPC, which was quantified directly on single GUVs. The other detergents induced mainly vesicle burst. Detergents that caused some increase in area induced Lo/Ld phase separation in the ternary mixture, with preferential solubilization of the latter. The insoluble area fraction left intact was quantified. Overall, the non-ionic detergents were the most effective in solubilizing lipid membranes.</p>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":" ","pages":"105473"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.chemphyslip.2025.105473","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Membrane solubilization by detergents is routinely performed to separate membrane components, and to extract and purify membrane proteins. This process depends both on the characteristics of the detergent and properties of the membrane. Here we investigate the interaction of eight detergents with very distinct physicochemical features with model membranes in different biologically relevant phases. The detergents chosen were the non-ionic Triton X-100, Triton X-165, C10E5, octyl glucopyranoside (OG) and dodecyl maltoside (DDM) and the ionic sodium dodecyl sulfate (SDS), cetyl trimethyl ammonium bromide (CTAB) and Chaps. Three lipid compositions were explored: pure palmitoyl oleoyl phosphatidylcholine (POPC), in the liquid-disordered (Ld) phase, sphingomyelin (SM)/cholesterol 7:3 (chol) in the liquid-ordered (Lo) phase and the biomimetic POPC/SM/chol 2:1:2, which might exhibit Lo/Ld phase separation. Turbidity measurements of small liposomes were performed along the titration with the detergents to obtain the overall solubilization profiles and optical microscopy of giant unilamellar vesicles (GUVs) was used to reveal the mechanism of interaction of the detergents. The presence of cholesterol renders the membranes partly/fully insoluble in all detergents, and the charged detergents are the least effective to solubilize POPC. The non-ionic detergents, with exception of DDM, with the bulkiest headgroup, caused a substantial increase in surface area of POPC, which was quantified directly on single GUVs. The other detergents induced mainly vesicle burst. Detergents that caused some increase in area induced Lo/Ld phase separation in the ternary mixture, with preferential solubilization of the latter. The insoluble area fraction left intact was quantified. Overall, the non-ionic detergents were the most effective in solubilizing lipid membranes.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.