Climate Change Drives Changes in the Size and Composition of Fungal Communities Along the Soil–Seedling Continuum of Schima superba

IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xian Wu, M. Derek MacKenzie, Jiarong Yang, Guoyu Lan, Yu Liu
{"title":"Climate Change Drives Changes in the Size and Composition of Fungal Communities Along the Soil–Seedling Continuum of Schima superba","authors":"Xian Wu,&nbsp;M. Derek MacKenzie,&nbsp;Jiarong Yang,&nbsp;Guoyu Lan,&nbsp;Yu Liu","doi":"10.1111/mec.17652","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Plant microbiomes have a major influence on forest structure and functions, as well as tree fitness and evolution. However, a comprehensive understanding of variations in fungi along the soil–plant continuum, particularly within tree seedlings, under global warming is lacking. Here, we investigated the dynamics of fungal communities across different compartments (including bulk soil and rhizosphere soil) and plant organs (including the endosphere of roots, stems and leaves) of <i>Schima superba</i> seedlings exposed to experimental warming and drought using AccuITS absolute quantitative sequencing. Our results revealed that warming and drought significantly reduced the number of specific fungal amplicon sequence variants (ASVs) in the bulk soil and rhizosphere soil, respectively. Variations in fungal communities were mainly explained by compartments and plant organs, with the composition of endophytic fungal communities within leaves (primarily attributed to species gain or loss) being most influenced by climate change. Moreover, warming significantly reduced the migration of Ascomycota, soil saprotrophs, wood saprotrophs and yeasts from the bulk soil to the rhizosphere soil but increased that of plant pathogens from the roots to the stems. Drought significantly decreased the absolute abundances of Chytridiomycota, Glomeromycota and Rozellomycota, as well as the migration of ectomycorrhizal fungi from the bulk soil to the rhizosphere soil but increased that of plant pathogens. Warming could indirectly reduce leaf area by increasing the diversity of leaf pathogens. These findings have potential implications for enhancing the resilience and functioning of natural forest ecosystems under climate change through the manipulation of plant microbiomes, as demonstrated in agroecosystems.</p>\n </div>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 4","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.17652","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plant microbiomes have a major influence on forest structure and functions, as well as tree fitness and evolution. However, a comprehensive understanding of variations in fungi along the soil–plant continuum, particularly within tree seedlings, under global warming is lacking. Here, we investigated the dynamics of fungal communities across different compartments (including bulk soil and rhizosphere soil) and plant organs (including the endosphere of roots, stems and leaves) of Schima superba seedlings exposed to experimental warming and drought using AccuITS absolute quantitative sequencing. Our results revealed that warming and drought significantly reduced the number of specific fungal amplicon sequence variants (ASVs) in the bulk soil and rhizosphere soil, respectively. Variations in fungal communities were mainly explained by compartments and plant organs, with the composition of endophytic fungal communities within leaves (primarily attributed to species gain or loss) being most influenced by climate change. Moreover, warming significantly reduced the migration of Ascomycota, soil saprotrophs, wood saprotrophs and yeasts from the bulk soil to the rhizosphere soil but increased that of plant pathogens from the roots to the stems. Drought significantly decreased the absolute abundances of Chytridiomycota, Glomeromycota and Rozellomycota, as well as the migration of ectomycorrhizal fungi from the bulk soil to the rhizosphere soil but increased that of plant pathogens. Warming could indirectly reduce leaf area by increasing the diversity of leaf pathogens. These findings have potential implications for enhancing the resilience and functioning of natural forest ecosystems under climate change through the manipulation of plant microbiomes, as demonstrated in agroecosystems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Ecology
Molecular Ecology 生物-进化生物学
CiteScore
8.40
自引率
10.20%
发文量
472
审稿时长
1 months
期刊介绍: Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include: * population structure and phylogeography * reproductive strategies * relatedness and kin selection * sex allocation * population genetic theory * analytical methods development * conservation genetics * speciation genetics * microbial biodiversity * evolutionary dynamics of QTLs * ecological interactions * molecular adaptation and environmental genomics * impact of genetically modified organisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信