Jesper Boman, Karin Näsvall, Roger Vila, Christer Wiklund, Niclas Backström
{"title":"Evolution of Hybrid Inviability Associated With Chromosome Fusions.","authors":"Jesper Boman, Karin Näsvall, Roger Vila, Christer Wiklund, Niclas Backström","doi":"10.1111/mec.17672","DOIUrl":null,"url":null,"abstract":"<p><p>Chromosomal rearrangements, such as inversions, have received considerable attention in the speciation literature due to their hampering effects on recombination. Less is known about how other rearrangements, such as chromosome fissions and fusions, can affect the evolution of reproductive isolation. Here, we use crosses between populations of the wood white butterfly (Leptidea sinapis) with different karyotypes to identify genomic regions associated with hybrid inviability. We map hybrid inviability candidate loci by contrasting allele frequencies between F<sub>2</sub> hybrids that survived until the adult stage with individuals of the same cohort that succumbed to hybrid incompatibilities. Hybrid inviability candidate regions have high genetic differentiation between parental populations, reduced recombination rates, and are enriched near chromosome fusions. By analysing sequencing coverage, we exclude aneuploidies as a direct link between hybrid inviability and chromosome fusions. Instead, our results point to an indirect relationship between hybrid inviability and chromosome fusions, possibly related to reduced recombination in fused chromosomes. Thus, we map postzygotic isolation to chromosomal rearrangements, providing crucial empirical evidence for the idea that chromosome number differences between taxa can contribute to speciation.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17672"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17672","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chromosomal rearrangements, such as inversions, have received considerable attention in the speciation literature due to their hampering effects on recombination. Less is known about how other rearrangements, such as chromosome fissions and fusions, can affect the evolution of reproductive isolation. Here, we use crosses between populations of the wood white butterfly (Leptidea sinapis) with different karyotypes to identify genomic regions associated with hybrid inviability. We map hybrid inviability candidate loci by contrasting allele frequencies between F2 hybrids that survived until the adult stage with individuals of the same cohort that succumbed to hybrid incompatibilities. Hybrid inviability candidate regions have high genetic differentiation between parental populations, reduced recombination rates, and are enriched near chromosome fusions. By analysing sequencing coverage, we exclude aneuploidies as a direct link between hybrid inviability and chromosome fusions. Instead, our results point to an indirect relationship between hybrid inviability and chromosome fusions, possibly related to reduced recombination in fused chromosomes. Thus, we map postzygotic isolation to chromosomal rearrangements, providing crucial empirical evidence for the idea that chromosome number differences between taxa can contribute to speciation.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms