Partially Degradable N-Type Conjugated Random Copolymers for Intrinsically Stretchable Organic Field-Effect Transistors.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Chia-Hsueh Chung, Yu-Chun Huang, Shang-Wen Su, Chun-Jen Su, U-Ser Jeng, Jung-Yao Chen, Yan-Cheng Lin
{"title":"Partially Degradable N-Type Conjugated Random Copolymers for Intrinsically Stretchable Organic Field-Effect Transistors.","authors":"Chia-Hsueh Chung, Yu-Chun Huang, Shang-Wen Su, Chun-Jen Su, U-Ser Jeng, Jung-Yao Chen, Yan-Cheng Lin","doi":"10.1002/marc.202401057","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a series of conjugated homopolymers (P1 and P5) and random copolymers (P2-P4) by copolymerizing naphthalene diimide (NDI) as the acceptor with varying ratios of two donor units, thiophene-imine-thiophene (TIT) and thiophene-vinylene-thiophene (TVT) is developed. The inclusion of TIT imparted degradability to the random copolymers under acidic conditions, offering a sustainable solution for electronic waste management. Structural analysis revealed that TIT favored edge-on molecular orientation, while TVT promoted face-on and end-to-end orientations. The synergistic combination of TIT and TVT in copolymerization resulted in balanced structural and functional properties with partial degradability conferred using the TIT units. The random copolymer P3, with an optimal equimolar TIT/TVT ratio, demonstrates superior electrical and mechanical performance. P3 exhibits an initial charge mobility of 0.10 cm<sup>2</sup> V⁻¹ s⁻¹ and maintained mobility of 0.0017 cm<sup>2</sup> V⁻¹ s⁻¹ under 20% strain, significantly outperforming P1 in mobility at almost strain levels. P3 also achieved a mobility retention of 31.3% under 20% strain, compared to 12.2% for P5. This study demonstrates that the copolymerization of TIT and TVT enables the fine-tuning of solid-state packing modes and molecular orientations, thereby improving both the stretchability and environmental sustainability of the materials.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2401057"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202401057","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a series of conjugated homopolymers (P1 and P5) and random copolymers (P2-P4) by copolymerizing naphthalene diimide (NDI) as the acceptor with varying ratios of two donor units, thiophene-imine-thiophene (TIT) and thiophene-vinylene-thiophene (TVT) is developed. The inclusion of TIT imparted degradability to the random copolymers under acidic conditions, offering a sustainable solution for electronic waste management. Structural analysis revealed that TIT favored edge-on molecular orientation, while TVT promoted face-on and end-to-end orientations. The synergistic combination of TIT and TVT in copolymerization resulted in balanced structural and functional properties with partial degradability conferred using the TIT units. The random copolymer P3, with an optimal equimolar TIT/TVT ratio, demonstrates superior electrical and mechanical performance. P3 exhibits an initial charge mobility of 0.10 cm2 V⁻¹ s⁻¹ and maintained mobility of 0.0017 cm2 V⁻¹ s⁻¹ under 20% strain, significantly outperforming P1 in mobility at almost strain levels. P3 also achieved a mobility retention of 31.3% under 20% strain, compared to 12.2% for P5. This study demonstrates that the copolymerization of TIT and TVT enables the fine-tuning of solid-state packing modes and molecular orientations, thereby improving both the stretchability and environmental sustainability of the materials.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信