Canfeng Yang, Chunhua He, Huasheng Zhuo, Jianxin Wang, Tuying Yong, Lu Gan, Xiangliang Yang, Lei Nie, Shuang Xi, Zhiyong Liu, Guanglan Liao and Tielin Shi
{"title":"Cost-effective microfluidic flow cytometry for precise and gentle cell sorting†","authors":"Canfeng Yang, Chunhua He, Huasheng Zhuo, Jianxin Wang, Tuying Yong, Lu Gan, Xiangliang Yang, Lei Nie, Shuang Xi, Zhiyong Liu, Guanglan Liao and Tielin Shi","doi":"10.1039/D4LC00900B","DOIUrl":null,"url":null,"abstract":"<p >Microfluidic flow cytometry (MFCM) is considered to be an effective substitute for traditional flow cytometry, because of its advantages in terms of higher integration, smaller device size, lower cost, and higher cell sorting activity. However, MFCM still faces challenges in balancing parameters such as sorting throughput, viability, sorting efficiency, and cost. Here, we demonstrate a cost-effective and high-performance microfluidic cytometry cell sorting system, along with a customized microfluidic chip that integrates hydrodynamic focusing, droplet encapsulation, and sorting for precise cell manipulation. An innovative photon incremental counting-based fluorescence detection method is proposed, which requires only one-fiftieth of the data compared to traditional methods. This significantly simplifies the structure of the system and substantially reduces costs. The system exhibits detection recoveries exceeding 95% across sample solution flow rates ranging from 10 to 80 μL min<small><sup>−1</sup></small>. Moreover, it accurately achieves individual droplet deflections at a droplet generation frequency of 1600 Hz. Ultimately, our cell sorting system offers an impressive sorting efficiency of 90.7% and a high cell viability of 94.3% when operating at a droplet generation frequency of 1316 Hz, highlighting its accuracy and gentleness throughout the entire process. Our work will enhance advances in the life sciences, thereby creating a boom in great applications in single-cell cloning, single-cell analysis, drug screening, <em>etc.</em></p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 4","pages":" 698-713"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lc/d4lc00900b","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Microfluidic flow cytometry (MFCM) is considered to be an effective substitute for traditional flow cytometry, because of its advantages in terms of higher integration, smaller device size, lower cost, and higher cell sorting activity. However, MFCM still faces challenges in balancing parameters such as sorting throughput, viability, sorting efficiency, and cost. Here, we demonstrate a cost-effective and high-performance microfluidic cytometry cell sorting system, along with a customized microfluidic chip that integrates hydrodynamic focusing, droplet encapsulation, and sorting for precise cell manipulation. An innovative photon incremental counting-based fluorescence detection method is proposed, which requires only one-fiftieth of the data compared to traditional methods. This significantly simplifies the structure of the system and substantially reduces costs. The system exhibits detection recoveries exceeding 95% across sample solution flow rates ranging from 10 to 80 μL min−1. Moreover, it accurately achieves individual droplet deflections at a droplet generation frequency of 1600 Hz. Ultimately, our cell sorting system offers an impressive sorting efficiency of 90.7% and a high cell viability of 94.3% when operating at a droplet generation frequency of 1316 Hz, highlighting its accuracy and gentleness throughout the entire process. Our work will enhance advances in the life sciences, thereby creating a boom in great applications in single-cell cloning, single-cell analysis, drug screening, etc.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.