Improving the Reliability of, and Confidence in, DFT Functional Benchmarking through Active Learning.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Javier E Alfonso-Ramos, Carlo Adamo, Éric Brémond, Thijs Stuyver
{"title":"Improving the Reliability of, and Confidence in, DFT Functional Benchmarking through Active Learning.","authors":"Javier E Alfonso-Ramos, Carlo Adamo, Éric Brémond, Thijs Stuyver","doi":"10.1021/acs.jctc.4c01729","DOIUrl":null,"url":null,"abstract":"<p><p>Validating the performance of exchange-correlation functionals is vital to ensure the reliability of density functional theory (DFT) calculations. Typically, these validations involve benchmarking data sets. Currently, such data sets are usually assembled in an unprincipled manner, suffering from uncontrolled chemical bias, and limiting the transferability of benchmarking results to a broader chemical space. In this work, a data-efficient solution based on active learning is explored to address this issue. Focusing─as a proof of principle─on pericyclic reactions, we start from the BH9 benchmarking data set and design a chemical reaction space around this initial data set by combinatorially combining reaction templates and substituents. Next, a surrogate model is trained to predict the standard deviation of the activation energies computed across a selection of 20 distinct DFT functionals. With this model, the designed chemical reaction space is explored, enabling the identification of challenging regions, <i>i.e.</i>, regions with large DFT functional divergence, for which representative reactions are subsequently acquired as additional training points. Remarkably, it turns out that the function mapping the molecular structure to functional divergence is readily learnable; convergence is reached upon the acquisition of fewer than 100 reactions. With our final updated model, a more challenging─and arguably more representative─pericyclic benchmarking data set is curated, and we demonstrate that the functional performance has changed significantly compared to the original BH9 subset.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01729","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Validating the performance of exchange-correlation functionals is vital to ensure the reliability of density functional theory (DFT) calculations. Typically, these validations involve benchmarking data sets. Currently, such data sets are usually assembled in an unprincipled manner, suffering from uncontrolled chemical bias, and limiting the transferability of benchmarking results to a broader chemical space. In this work, a data-efficient solution based on active learning is explored to address this issue. Focusing─as a proof of principle─on pericyclic reactions, we start from the BH9 benchmarking data set and design a chemical reaction space around this initial data set by combinatorially combining reaction templates and substituents. Next, a surrogate model is trained to predict the standard deviation of the activation energies computed across a selection of 20 distinct DFT functionals. With this model, the designed chemical reaction space is explored, enabling the identification of challenging regions, i.e., regions with large DFT functional divergence, for which representative reactions are subsequently acquired as additional training points. Remarkably, it turns out that the function mapping the molecular structure to functional divergence is readily learnable; convergence is reached upon the acquisition of fewer than 100 reactions. With our final updated model, a more challenging─and arguably more representative─pericyclic benchmarking data set is curated, and we demonstrate that the functional performance has changed significantly compared to the original BH9 subset.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信