Xiang Chen , Haitai Hu , Pingli Liu , Juan Du , Maoxing Wang , Hongming Tang , Zhaoxu Deng , Guan Wang , Fei Liu
{"title":"Enhancing fracture conductivity in carbonate formations through mineral alteration","authors":"Xiang Chen , Haitai Hu , Pingli Liu , Juan Du , Maoxing Wang , Hongming Tang , Zhaoxu Deng , Guan Wang , Fei Liu","doi":"10.1016/j.ijrmms.2025.106027","DOIUrl":null,"url":null,"abstract":"<div><div>In geothermal, oil, and gas reservoirs, the conductivity of hydraulic or acid-etched fracture determines efficient and economical resource exploitation. Proppant embedding or acid-rock reaction weakening rock leads to a sharp decline in fracture conductivity. Mineral alteration is a technique of in-situ transformation of existing minerals into harder minerals to improve rock strength, and diammonium hydrogen phosphate (DAP) has been shown to be an effective mineral alteration agent for high-porosity and high-permeability carbonate rocks at low temperatures. This work studied the effect of 10 wt% HCl and 0.8 M DAP solution on the hardness of rock samples (0.36%–1.31 % porosity and 2.72–17 × 10<sup>−6</sup> μm<sup>2</sup> permeability) at 25, 80, 140 and 200 °C. The experimental results proved the weakening effect of acid and the strengthening effect of DAP on rock. The mechanism of hardening caused by DAP treatment and the positive effects of high temperature were revealed. As the temperature increased, the chemical reaction between DAP and rock accelerated, resulting in an increase in the amount of reaction products (calcium phosphate) and higher crystallinity, which made the rock harder. Even at ultra-high temperatures (200 °C), DAP treatment remained remarkably effective for very dense rock samples. In addition, the relationship between rock hardness and rock embedding strength was established. The fracture conductivities under different rock hardness were calculated by Nierode-Kruk correlation and numerical method. The results indicated that it was feasible to improve the fracture conductivity through DAP treatment at high temperatures. This study provides a theoretical basis for creating high-conductivity fractures through mineral alteration in deep carbonate reservoirs.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"186 ","pages":"Article 106027"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160925000048","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In geothermal, oil, and gas reservoirs, the conductivity of hydraulic or acid-etched fracture determines efficient and economical resource exploitation. Proppant embedding or acid-rock reaction weakening rock leads to a sharp decline in fracture conductivity. Mineral alteration is a technique of in-situ transformation of existing minerals into harder minerals to improve rock strength, and diammonium hydrogen phosphate (DAP) has been shown to be an effective mineral alteration agent for high-porosity and high-permeability carbonate rocks at low temperatures. This work studied the effect of 10 wt% HCl and 0.8 M DAP solution on the hardness of rock samples (0.36%–1.31 % porosity and 2.72–17 × 10−6 μm2 permeability) at 25, 80, 140 and 200 °C. The experimental results proved the weakening effect of acid and the strengthening effect of DAP on rock. The mechanism of hardening caused by DAP treatment and the positive effects of high temperature were revealed. As the temperature increased, the chemical reaction between DAP and rock accelerated, resulting in an increase in the amount of reaction products (calcium phosphate) and higher crystallinity, which made the rock harder. Even at ultra-high temperatures (200 °C), DAP treatment remained remarkably effective for very dense rock samples. In addition, the relationship between rock hardness and rock embedding strength was established. The fracture conductivities under different rock hardness were calculated by Nierode-Kruk correlation and numerical method. The results indicated that it was feasible to improve the fracture conductivity through DAP treatment at high temperatures. This study provides a theoretical basis for creating high-conductivity fractures through mineral alteration in deep carbonate reservoirs.
期刊介绍:
The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.