Improvement of conditions for global solvability in a chemotaxis system with signal-dependent motility and generalized logistic source

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Changfeng Liu , Jianping Gao
{"title":"Improvement of conditions for global solvability in a chemotaxis system with signal-dependent motility and generalized logistic source","authors":"Changfeng Liu ,&nbsp;Jianping Gao","doi":"10.1016/j.aml.2025.109470","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with a chemotaxis system with signal-dependent motility <span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>γ</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>χ</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mi>u</mi><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>λ</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>l</mi></mrow></msup><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>∂</mi></mrow><mrow><mi>ν</mi></mrow></msub><mi>u</mi><mo>=</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>ν</mi></mrow></msub><mi>v</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>∂</mi><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≥</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>v</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≥</mo><mn>0</mn><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span> under homogeneous Neumann boundary conditions in a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> <span><math><mrow><mo>(</mo><mi>n</mi><mo>&gt;</mo><mn>2</mn><mo>)</mo></mrow></math></span>. If <span><math><mrow><mi>λ</mi><mo>∈</mo><mi>R</mi></mrow></math></span> and <span><math><mrow><mi>μ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> are constants, we prove that this problem possesses a global classical solution that is uniformly bounded under the conditions that <span><math><mrow><mi>l</mi><mo>&gt;</mo><mo>min</mo><mfenced><mrow><mn>3</mn><mo>,</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced><mo>.</mo></mrow></math></span> This result partially improved the work of Lv and Wang (Proc Roy Soc Edinburgh Sect A. 2021, 151 (2): 821-841), in which, the global boundedness of solution is established for <span><math><mrow><mi>l</mi><mo>&gt;</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>. Our results show that there is a consistent decay rate that effectively rules out the occurrence of blow-up phenomena across all spatial dimensions in the system.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109470"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925000175","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with a chemotaxis system with signal-dependent motility ut=(γ(v)u)(χ(v)uv)+λuμulxΩ,t>0,vt=Δvv+uxΩ,t>0,νu=νv=0xΩ,t>0,u(x,0)=u0(x)0,v(x,0)=v0(x)0xΩ, under homogeneous Neumann boundary conditions in a bounded domain ΩRn (n>2). If λR and μ>0 are constants, we prove that this problem possesses a global classical solution that is uniformly bounded under the conditions that l>min3,n+22. This result partially improved the work of Lv and Wang (Proc Roy Soc Edinburgh Sect A. 2021, 151 (2): 821-841), in which, the global boundedness of solution is established for l>n+22. Our results show that there is a consistent decay rate that effectively rules out the occurrence of blow-up phenomena across all spatial dimensions in the system.
一类具有信号依赖运动和广义logistic源的趋化系统全局可解性条件的改进
本文研究了一个具有信号相关运动率ut=∇⋅(γ(v)∇u) -∇⋅(χ(v)u∇v)+λu−μulx∈Ω,t>0,vt=Δv−v+ux∈Ω,t>0,∂νu=∂νv=0x∈∂Ω,t>0,u(x,0)=u0(x)≥0,v(x,0)=v0(x)≥0x∈Ω的趋化系统,在有界域Ω∧Rn(n>2)齐次诺伊曼边界条件下。如果λ∈R和μ>;0是常数,我们证明了该问题在l>;min3,n+22条件下具有一致有界的全局经典解。该结果部分改进了Lv和Wang (Proc Roy Soc Edinburgh Sect ., 2021, 151(2): 821-841)的工作,其中建立了l>;n+22解的整体有界性。我们的结果表明,在系统的所有空间维度上,存在一致的衰减率,有效地排除了爆炸现象的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信