Antisymmetric Magnetoresistance in a CrTe2/Bi2Te3/CrTe2 van der Waals Heterostructure Grown by MBE

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yongkang Xu, Xingze Dai, Pengfei Yan, Jin Wang, Shuanghai Wang, Yafeng Deng, Yu Liu, Kun He, Taikun Wang, Caitao Li, Yongbing Xu, Liang He
{"title":"Antisymmetric Magnetoresistance in a CrTe2/Bi2Te3/CrTe2 van der Waals Heterostructure Grown by MBE","authors":"Yongkang Xu, Xingze Dai, Pengfei Yan, Jin Wang, Shuanghai Wang, Yafeng Deng, Yu Liu, Kun He, Taikun Wang, Caitao Li, Yongbing Xu, Liang He","doi":"10.1021/acsami.4c19932","DOIUrl":null,"url":null,"abstract":"The magnetoresistance (MR) of spin valves usually displays a symmetric dependence on the magnetic field. An antisymmetric MR phenomenon has been discovered recently that breaks field symmetry and has the potential to realize polymorphic memory. In this work, centimeter-size and high-quality CrTe<sub>2</sub>/Bi<sub>2</sub>Te<sub>3</sub>/CrTe<sub>2</sub> van der Waals (vdWs) heterostructure devices have been prepared using molecular beam epitaxy (MBE). By changing the magnetization direction of the top and bottom layers of CrTe<sub>2</sub>, an antisymmetric MR effect with high, intermediate, and low resistance states has been found and persists up to 75K. The emergence of this antisymmetric MR phenomenon is attributed to the spin Hall effect, which generates spin currents with both spin-up and spin-down orientations on the upper and lower surfaces of Bi<sub>2</sub>Te<sub>3</sub>. The spin currents diffuse or reflect at the Bi<sub>2</sub>Te<sub>3</sub>/CrTe<sub>2</sub> interfaces alongside the additional charge currents induced by the inverse spin Hall effect (ISHE). Through theoretical calculations, the existence of the antisymmetric MR effect has also been confirmed. Our work emphasizes the use of the MBE technology to grow vdWs heterostructures to explore new physical phenomena and potential applications of spin electronic devices in polymorphic solid-state storage.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"25 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c19932","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The magnetoresistance (MR) of spin valves usually displays a symmetric dependence on the magnetic field. An antisymmetric MR phenomenon has been discovered recently that breaks field symmetry and has the potential to realize polymorphic memory. In this work, centimeter-size and high-quality CrTe2/Bi2Te3/CrTe2 van der Waals (vdWs) heterostructure devices have been prepared using molecular beam epitaxy (MBE). By changing the magnetization direction of the top and bottom layers of CrTe2, an antisymmetric MR effect with high, intermediate, and low resistance states has been found and persists up to 75K. The emergence of this antisymmetric MR phenomenon is attributed to the spin Hall effect, which generates spin currents with both spin-up and spin-down orientations on the upper and lower surfaces of Bi2Te3. The spin currents diffuse or reflect at the Bi2Te3/CrTe2 interfaces alongside the additional charge currents induced by the inverse spin Hall effect (ISHE). Through theoretical calculations, the existence of the antisymmetric MR effect has also been confirmed. Our work emphasizes the use of the MBE technology to grow vdWs heterostructures to explore new physical phenomena and potential applications of spin electronic devices in polymorphic solid-state storage.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信