State estimation with quantum extreme learning machines beyond the scrambling time

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Marco Vetrano, Gabriele Lo Monaco, Luca Innocenti, Salvatore Lorenzo, G. Massimo Palma
{"title":"State estimation with quantum extreme learning machines beyond the scrambling time","authors":"Marco Vetrano, Gabriele Lo Monaco, Luca Innocenti, Salvatore Lorenzo, G. Massimo Palma","doi":"10.1038/s41534-024-00927-5","DOIUrl":null,"url":null,"abstract":"<p>Quantum extreme learning machines (QELMs) leverage untrained quantum dynamics to efficiently process information encoded in input quantum states, avoiding the high computational cost of training more complicated nonlinear models. On the other hand, quantum information scrambling (QIS) quantifies how the spread of quantum information into correlations makes it irretrievable from local measurements. Here, we explore the tight relation between QIS and the predictive power of QELMs. In particular, we show efficient state estimation is possible even beyond the scrambling time, for many different types of dynamics — in fact, we show that in all the cases we studied, the reconstruction efficiency at long interaction times matches the optimal one offered by random global unitary dynamics. These results offer promising venues for robust experimental QELM-based state estimation protocols, as well as providing novel insights into the nature of QIS from a state estimation perspective.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"207 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00927-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum extreme learning machines (QELMs) leverage untrained quantum dynamics to efficiently process information encoded in input quantum states, avoiding the high computational cost of training more complicated nonlinear models. On the other hand, quantum information scrambling (QIS) quantifies how the spread of quantum information into correlations makes it irretrievable from local measurements. Here, we explore the tight relation between QIS and the predictive power of QELMs. In particular, we show efficient state estimation is possible even beyond the scrambling time, for many different types of dynamics — in fact, we show that in all the cases we studied, the reconstruction efficiency at long interaction times matches the optimal one offered by random global unitary dynamics. These results offer promising venues for robust experimental QELM-based state estimation protocols, as well as providing novel insights into the nature of QIS from a state estimation perspective.

Abstract Image

超越置乱时间的量子极限学习机状态估计
量子极限学习机(qelm)利用未经训练的量子动力学来有效地处理输入量子态中编码的信息,避免了训练更复杂的非线性模型的高计算成本。另一方面,量子信息置乱(QIS)量化了量子信息如何传播到相关中,使其无法从局部测量中恢复。在这里,我们探讨QIS和qelm的预测能力之间的紧密关系。特别是,我们证明了有效的状态估计是可能的,甚至超过置乱时间,对于许多不同类型的动力学,事实上,我们表明,在我们研究的所有情况下,在长交互时间下的重建效率与随机全局统一动力学提供的最优效率相匹配。这些结果为基于qelm的鲁棒实验状态估计协议提供了有希望的场所,并从状态估计的角度对QIS的本质提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信