Primordial gravitational wave backgrounds from phase transitions with next generation ground based detectors

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Chiara Caprini, Oriol Pujolàs, Hippolyte Quelquejay-Leclere, Fabrizio Rompineve and Danièle A Steer
{"title":"Primordial gravitational wave backgrounds from phase transitions with next generation ground based detectors","authors":"Chiara Caprini, Oriol Pujolàs, Hippolyte Quelquejay-Leclere, Fabrizio Rompineve and Danièle A Steer","doi":"10.1088/1361-6382/ad9a48","DOIUrl":null,"url":null,"abstract":"Third generation ground-based gravitational wave (GW) detectors, such as Einstein Telescope and Cosmic Explorer, will operate in the Hz frequency band, with a boost in sensitivity providing an unprecedented reach into primordial cosmology. Working concurrently with pulsar timing arrays in the nHz band, and LISA in the mHz band, these 3G detectors will be powerful probes of beyond the standard model particle physics on scales GeV. Here we focus on their ability to probe phase transitions (PTs) in the early Universe. We first overview the landscape of detectors across frequencies, discuss the relevance of astrophysical foregrounds, and provide convenient and up-to-date power-law integrated sensitivity curves for these detectors. We then present the constraints expected from GW observations on first order PTs and on topological defects (strings and domain walls), which may be formed when a symmetry is broken irrespective of the order of the phase transition. These constraints can then be applied to specific models leading to first order PTs and/or topological defects. In particular we discuss the implications for axion models, which solve the strong CP problem by introducing a spontaneously broken Peccei-Quinn (PQ) symmetry. For post-inflationary breaking, the PQ scale must lie in the GeV range, and so the signal from a first order PQ PT falls within reach of ground based 3G detectors. A scan in parameter space of signal-to-noise ratio in a representative model reveals their large potential to probe the nature of the PQ transition. Additionally, in heavy axion type models domain walls form, which can lead to a detectable GW background. We discuss their spectrum and summarise the expected constraints on these models from 3G detectors, together with SKA and LISA7.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"34 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad9a48","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Third generation ground-based gravitational wave (GW) detectors, such as Einstein Telescope and Cosmic Explorer, will operate in the Hz frequency band, with a boost in sensitivity providing an unprecedented reach into primordial cosmology. Working concurrently with pulsar timing arrays in the nHz band, and LISA in the mHz band, these 3G detectors will be powerful probes of beyond the standard model particle physics on scales GeV. Here we focus on their ability to probe phase transitions (PTs) in the early Universe. We first overview the landscape of detectors across frequencies, discuss the relevance of astrophysical foregrounds, and provide convenient and up-to-date power-law integrated sensitivity curves for these detectors. We then present the constraints expected from GW observations on first order PTs and on topological defects (strings and domain walls), which may be formed when a symmetry is broken irrespective of the order of the phase transition. These constraints can then be applied to specific models leading to first order PTs and/or topological defects. In particular we discuss the implications for axion models, which solve the strong CP problem by introducing a spontaneously broken Peccei-Quinn (PQ) symmetry. For post-inflationary breaking, the PQ scale must lie in the GeV range, and so the signal from a first order PQ PT falls within reach of ground based 3G detectors. A scan in parameter space of signal-to-noise ratio in a representative model reveals their large potential to probe the nature of the PQ transition. Additionally, in heavy axion type models domain walls form, which can lead to a detectable GW background. We discuss their spectrum and summarise the expected constraints on these models from 3G detectors, together with SKA and LISA7.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信