Sofia Baldini , Gianluca Guernieri , Domen Gorjup , Paolo Gardonio , Janko Slavič , Roberto Rinaldo
{"title":"3D sound radiation reconstruction from camera measurements","authors":"Sofia Baldini , Gianluca Guernieri , Domen Gorjup , Paolo Gardonio , Janko Slavič , Roberto Rinaldo","doi":"10.1016/j.ymssp.2025.112400","DOIUrl":null,"url":null,"abstract":"<div><div>In general, the measurement of the sound radiation field by machinery and partitions requires time-consuming tests, which should be carried out in specially dedicated anechoic/reverberant facilities with calibrated sensors and complex acquisition and post processing equipment. This article introduces a two-step method for the identification from optical measurements of the free-field sound radiation generated by flexural vibrations of closed shells. In the first step, the flexural vibration of the shell is reconstructed with a frequency domain triangulation technique based on short multi-view video acquisitions made with a single high-resolution, high-speed camera. In the second step, the free-field sound radiation is derived from a discretized boundary integral formulation. The study is focused on the identification of the sound radiation from the flexural vibration of a baffled cylinder model structure. The vibration and sound fields reconstructed from the camera measurements are validated against direct measurements taken with a laser scanner vibrometer and a microphone array, respectively. Overall, this research demonstrates that optical methods based on camera measurements can be suitably employed to produce fast and accurate full-field measurements of sound radiation of closed shells (without the need for a dedicated measurement environment, e.g. reverberant, anechoic chambers).</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"227 ","pages":"Article 112400"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327025001013","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In general, the measurement of the sound radiation field by machinery and partitions requires time-consuming tests, which should be carried out in specially dedicated anechoic/reverberant facilities with calibrated sensors and complex acquisition and post processing equipment. This article introduces a two-step method for the identification from optical measurements of the free-field sound radiation generated by flexural vibrations of closed shells. In the first step, the flexural vibration of the shell is reconstructed with a frequency domain triangulation technique based on short multi-view video acquisitions made with a single high-resolution, high-speed camera. In the second step, the free-field sound radiation is derived from a discretized boundary integral formulation. The study is focused on the identification of the sound radiation from the flexural vibration of a baffled cylinder model structure. The vibration and sound fields reconstructed from the camera measurements are validated against direct measurements taken with a laser scanner vibrometer and a microphone array, respectively. Overall, this research demonstrates that optical methods based on camera measurements can be suitably employed to produce fast and accurate full-field measurements of sound radiation of closed shells (without the need for a dedicated measurement environment, e.g. reverberant, anechoic chambers).
期刊介绍:
Journal Name: Mechanical Systems and Signal Processing (MSSP)
Interdisciplinary Focus:
Mechanical, Aerospace, and Civil Engineering
Purpose:Reporting scientific advancements of the highest quality
Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems